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MODULE

ONE

SYSTEMS OF LINEAR

EQUATIONS AND MATRICES

1.1 Matrices and Matrix operations

A matrix is a rectangular array of numbers. The numbers in

the array are called the entries in the matrix. The size of a

matrix is described in terms of the number of rows (horizontal

lines) and columns (vertical lines) it contains.
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10 
1 2

3 0

−1 4


[
2 1 0 −3

] 
e π −

√
2

0 1/2 1

0 0 0


1

3

 [
4

]
are

some examples.

The first matrix in example has three rows and two columns, so

its size is 3 by 2 (written 3× 2). In a size description, the first

number always denotes the number of rows, and the second

denotes the number of columns. The remaining matrices in

example have sizes 1× 4, 3× 3, 2× 1, and 1× 1, respectively.

A matrix with only one row, such as the second in Example, is

called a row vector (or a row matrix), and a matrix with only

one column, such as the fourth in that example, is called a

column vector (or a column matrix). The fifth matrix in that

example is both a row vector and a column vector.

In general, a matrix with m rows and n columns is written as

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn


.

A matrix A with n rows and n columns is called a square

matrix of order n, and the entries a11 , a22 , ..., ann in are said to
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be on the main diagonal of A.

Two matrices are defined to be equal if they have the same

size and their corresponding entries are equal.

If A and B are matrices of the same size, then the sum A

+ B is the matrix obtained by adding the entries of B to

the corresponding entries of A, and the difference A - B is

the matrix obtained by subtracting the entries of B from the

corresponding entries of A. Matrices of different sizes cannot

be added or subtracted.

If A is any matrix and c is any scalar, then the product cA is

the matrix obtained by multiplying each entry of the matrix A

by c. The matrix cA is said to be a scalar multiple of A.

If A is an m × r matrix and B is an r × n matrix, then the

product AB is the m × n matrix whose entries are determined

as follows: To find the entry in row i and column j of AB,

single out row i from the matrix A and column j from the

matrix B. Multiply the corresponding entries from the row and

column together, and then add up the resulting products.

If A1 , A2 , . . . , Ar are matrices of the same size, and if

c1 , c2 , . . . , cr are scalars, then an expression of the form
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c1A1 + c2A2 + . . . + crAr is called a linear combination of

A1 , A2 , . . . , Ar with coefficients c1 , c2 , . . . , cr .

If A is an m × n matrix, and if x is an n × 1 column vector,

then the product Ax can be expressed as a linear combination

of the column vectors of A in which the coefficients are the

entries of x.

The matrix product can be written as the following linear

combination of column vectors, for example:
−1 3 2

1 2 −3

2 1 −2




2

−1

3

 =


1

−9

−3

 can be written as

2


−1

1

2

− 1


3

2

1

+ 3


2

−3

−2

 =


1

−9

−3

.

Matrix multiplication has an important application to

systems of linear equations. Consider a system of m linear

equations in n unknowns:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . . . . . . . . . . .

am1x1 + am2x2 + . . .+ amnxn = bm .
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The above system of equations can be expressed as a single

matrix equation AX = B (3), where

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn


, X =



x1

x2

...

xn


, B =



b1

b2
...

bm


. The matrix A in this equation is called the coefficient

matrix of the system, the matrix X in this equation is called

the variable matrix of the system, the matrix B in this

equation is called the constant matrix of the system.

If A is any m × n matrix, then the transpose of A, denoted

by AT , is defined to be the n × m matrix that results by

interchanging the rows and columns of A; that is, the first

column of AT is the first row of A, the second column of AT is

the second row of A, and so forth.

For example: If A =


2 3

1 4

5 6

, then AT =

2 1 5

3 4 6



If A is a square matrix, then the trace of A, denoted by

tr(A), is defined to be the sum of the entries on the main
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diagonal of A. The trace of A is undefined if A is not a square

matrix.

Examples: Let A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =


−1 3 2

1 2 −3

2 1 −2

,

then tr(A)=a11 + a22 + a33 and tr(B)=(-1)+2+(-2)=-1.

Determine whether the statements given below are true or false.

(a) The matrix

1 2 3

4 5 6

 has no main diagonal.

(b) An m × n matrix has m column vectors and n row vectors.

(c) If A and B are 2 × 2 matrices, then AB = BA.

(d) The ith row vector of a matrix product AB can be

computed by multiplying A by the ith row vector of B.

(e) For every matrix A, it is true that (AT )T = A.

(f ) If A and B are square matrices of the same order, then

tr(AB) = tr(A)tr(B) (g) If A and B are square matrices of the

same order, then (AB)T = ATBT .

(h) For every square matrix A, it is true that tr(AT ) = tr(A).

(i) If A is a 6 × 4 matrix and B is an m × n matrix such that

BT AT is a 2 × 6 matrix, then m = 4 and n = 2.
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(j) If A is an n × n matrix and c is a scalar,

then tr(cA) = c tr(A).

(k) If A, B, and C are matrices of the same size such that

A - C = B - C, then A = B.

(l) If A, B, and C are square matrices of the same order such

that AC = BC, then A = B. (m) If AB + BA is defined, then

A and B are square matrices of the same size.

(n) If B has a column of zeros, then so does AB if this product

is defined.

(o) If B has a column of zeros, then so does BA if this product

is defined.

Answers: (a) True (b) False (c) False (d) False (e) True (f)

False (g) False (h) True (i) True (j) True (k) True (l) False

(m)True (n) True (o) False

Algebraic Properties of Matrices

Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the

indicated operations can be performed, the following rules of

matrix arithmetic are valid.
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(a) A + B = B + A [Commutative law for matrix addition]

(b) A + (B + C) = (A + B) + C [Associative law for matrix

addition]

(c) A(BC) = (AB)C [Associative law for matrix multiplication]

(d ) A(B + C) = AB + AC [Left distributive law]

(e) (B + C)A = BA + CA [Right distributive law]

(f) A(B - C) = AB - AC

(g) (B - C)A = BA - CA

(h) a(B + C) = aB + aC

(i) a(B - C) = aB - aC

(j) (a + b)C = aC + bC

(k) (a - b)C = aC - bC

(l) a(bC) = (ab)C

(m) a(BC) = (aB)C = B(aC)

Commutative law for multiplication will not hold always. The

equality of AB and BA can fail for three possible reasons:

1. AB may be defined and BA may not (for example, if A is 2

× 3 and B is 3 × 4).

2. AB and BA may both be defined, but they may have

different sizes (for example, if A is 2 × 3 and B is 3 × 2).
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3. AB and BA may both be defined and have the same size,

but the two products may be different.

A matrix whose entries are all zero is called a zero matrix.

Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that

the operations can be perfomed, then:

(a) A + 0 = 0 + A = A

(b) A - 0 = A

(c) A - A = A + (-A) = 0

(d) 0A = 0

(e) If cA = 0, then c = 0 or A = 0.

Since we know that the commutative law of real arithmetic is

not valid in matrix arithmetic, it should not be surprising that

there are other rules that fail as well. For example, consider

the following two laws of real arithmetic:

� If ab = ac and a 6= 0, then b = c. [The cancellation law]

� If ab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in

matrix arithmetic.
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Consider the matrices

A =

0 1

0 2

 , B =

1 1

3 4

 , C =

2 5

3 4

.

Here, AB = AC =

3 4

6 8

.

Although A 6= 0, canceling A from both sides of the equation

AB = AC would lead to the incorrect conclusion that B = C.

Thus, the cancellation law does not hold, in general, for matrix

multiplication (though there may be particular cases where it

is true).

Consider the example of two matricesA and B for which

AB = 0, but A 6= 0 and B 6= 0:

A =

0 1

0 2

 , B =

3 7

0 0

.

A square matrix with 1’s on the main diagonal and zeros

elsewhere is called an identity matrix. An identity matrix is

denoted by the letter I.

For example: A =


1 0 0

0 1 0

0 0 1

.

If it is important to emphasize the size, we will write In for the
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n × n identity matrix.

If A is any m × n matrix, then AIn = A and ImA = A.

1.2 Determinant

For every square matrix A = [a
ij

], we associate a number called

determinant of A, denoted by |A| or det(A).

If A = [a11 ], det(A)=a11 .

If A =

a11 a12

a21 a22

, det(A) = a11a22 − a21a12 .

If A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

, then

det(A) =

a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11

a22 a23

a32 a33

− a21

a12 a13

a32 a33

+ a31

a12 a13

a22 a23

.

If A is a square matrix, then the minor of entry a
ij

is
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denoted by M
ij

and is defined to be the determinant of the

submatrix that remains after the ith row and j th column are

deleted from A. The number (-1)i+jM
ij

is denoted by C
ij

and

is called the cofactor of entry a
ij

.

Example. Consider the matrix A =


3 1 −4

2 5 6

1 4 8

.

The minor of a11 = M11 =
5 6

4 8
= 16.

The cofactor of a11 = C11 = (−1)1+1M11 = M11 = 16.

The minor of a12 = M12 =
2 6

1 8
= 10.

The cofactor of a12 = C12 = (−1)1+2M12 = −M12 = −10.

Similarly, we can find for all other entries of A.

If A is an n × n matrix, then the number obtained by

multiplying the entries in any row or column of A by the

corresponding cofactors and adding the resulting products is

called the determinant of A, and the sums themselves are

called cofactor expansions of A. That is,

det(A) = a
1j
C

1j
+ a

2j
C

2j
+ . . . + a

nj
C
nj

, cofactor expansion
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along the jth column

det(A) = a
i1
C
i1

+ a
i2
C
i2

+ . . . + a
in
C
in

, cofactor expansion

along the ith row.

Example. Find the determinant of the matrix A =
3 1 0

−2 −4 3

5 4 −2


by cofactor expansion along the first row.

Solution. det(A) =

3 1 0

−2 −4 3

5 4 −2

= 3
−4 3

4 −2
−

1
−2 3

5 −2
+ 0

−2 −4

5 4

= 3(−4)− (1)(−11) + 0 = −1.

Theorem 1.1. Let A be a square matrix. If A has a row

of zeros or a column of zeros, then det(A) = 0.

Proof. Since the determinant of A can be found by a cofactor

expansion along any row or column, we can use the row or

column of zeros. Thus, if we let C1 , C2 ,...,Cn denote the

cofactors of A along that row or column, then it follows from
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cofactor expansion that det(A) = 0 · C1 + 0 · C2 +···+ 0 · Cn

= 0.

Theorem 1.2. Let A be a square matrix. Then det(A) =

det(AT ).

Proof. Since transposing a matrix changes its columns to rows

and its rows to columns, the cofactor expansion of A along

any row is the same as the cofactor expansion of AT along the

corresponding column. Thus, both have the same determinant.

Theorem 1.3. Let A be an n × n matrix.

(a) If B is the matrix that results when a single row or single

column of A is multiplied by a scalar k, then

det(B) = k det(A).

(b) If B is the matrix that results when two rows or two

columns of A are interchanged, then det(B) = - det(A).

(c) If B is the matrix that results when a multiple of one row

of A is added to another or when a multiple of one column is

added to another, then det(B) = det(A).

Theorem 1.4. If A is a square matrix with two proportional

rows or two proportional columns, then det(A) = 0.

Example matrices having two proportional rows or columns;
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thus, each has a determinant of zero.−1 4

−2 8

 ,


1 −2 7

−4 8 5

2 −4 3



1.3 Inverse of a matrix

A square matrix whose determinant is equal to zero is called a

singular matrix.

A square matrix whose determinant is not equal to zero is

called a non-singular matrix.

Consider A =

5 10

3 6

 , B =

3 4

5 8

. Now, det(A) or |A| = 0

and det(B) or |B| 6= 0. So A is singular and B is non-singular.

If A is a square matrix, and if a matrix B of the same size

can be found such that AB = BA = I , then A is said to be

invertible (or nonsingular) and B is called an inverse of

A. If no such matrix B can be found, then A is said to be

singular.

The relationship AB = BA = I is not changed by interchanging
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A and B, so if A is invertible and B is an inverse of A, then it

is also true that B is invertible, and A is an inverse of B. Thus,

when AB = BA = I we say that A and B are inverses of one

another.

Consider the matrices A =

 2 −5

−1 3

 , B =

3 5

1 2

. A and B

are inverses of each other. One can check it by AB = BA = I.

Theorem 1.5 If B and C are both inverses of the matrix A,

then B = C.

Proof. Since B is an inverse of A, we have BA = I. Multiplying

both sides on the right by C gives (BA)C = IC = C. But it is

also true that (BA)C = B(AC) = BI = B, so C = B.

Remark 1: If A is invertible, then its inverse will be denoted

by the symbol A−1. Then, AA−1 = I = A−1A.

Formula for finding the inverse:

Let A be a square matrix. Then A−1 =
adjA

det(A)
.

Theorem 1.6. If A and B are invertible matrices with the

same size, then AB is invertible and (AB)−1 = B−1A−1.

Proof. We can establish the invertibility and obtain

the stated formula at the same time by showing that

(AB)(B−1A−1) = (B−1A−1)(AB) = I. But (AB)(B−1A−1) =
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A(BB−1)A−1 = AIA−1 = AA−1 = I and similarly,

(B−1A−1)(AB) = I.

Remark 2: A product of any number of invertible matrices is

invertible, and the inverse of the product is the product of the

inverses in the reverse order.

Some properties:

If A is invertible and n is a nonnegative integer, then:

A0 = I and An = AA . . . A[nfactors]

A−n = (A−1)n = A−1A−1 . . . A−1[nfactors]

ArAs = Ar+s and (Ar)s = Ars

A−1 is invertible and (A−1)−1 = A.

An is invertible and (An)−1 = A−n = (A−1)n.

kA is invertible for any nonzero scalar k, and (kA)−1 = k−1A−1.

Properties of the transpose:

If the sizes of the matrices are such that the stated operations

can be performed, then:

(AT )T = A

(A+B)T = AT +BT

(A−B)T = AT −BT

(kA)T = kAT



26

(AB)T = BTAT

Remark 3: The transpose of a product of any number of

matrices is the product of the transposes in the reverse order.

Theorem 1.7. If A is an invertible matrix, then AT is also

invertible and (AT )−1 = (A−1)T .

Proof. We can establish the invertibility and obtain the formula

at the same time by showing that AT (A−1)T = (A−1)TAT = I

But from the facts that (AB)T = BTAT and IT = I, we have

AT (A−1)T = (A−1A)T = IT = I

(A−1)TAT = (AA−1)T = IT = I which completes the proof.

Elementary row operations:

1. Multiply a row by a nonzero constant c.

2. Interchange two rows.

3. Add a constant c times one row to another.

It should be evident that if we let B be the matrix that results

from A by performing one of the operations in this list, then

the matrix A can be recovered from B by performing the

corresponding operation in the following list:

1. Multiply the same row by 1/c.
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2. Interchange the same two rows.

3. If B resulted by adding c times row r
i

of A to row r
j

, then

add -c times r
j

to r
i
.

It follows that if B is obtained from A by performing a

sequence of elementary row operations, then there is a second

sequence of elementary row operations, which when applied to

B recovers A.

Matrices A and B are said to be row equivalent if either

(hence each) can be obtained from the other by a sequence of

elementary row operations.

A matrix E is called an elementary matrix if it can be

obtained from an identity matrix by performing a single

elementary row operation.

Consider I2 =

1 0

0 1

. Multiplying the second row of I2 by −3

we get an elementary matrix

1 0

0 −3

.

Interchaning second and fourth rows of I4 yields an elementary
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matrix



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


.

Theorem 1.8.Row Operations by Matrix Multiplication: If

the elementary matrix E results from performing a certain row

operation on Im and if A is an m × n matrix, then the product

EA is the matrix that results when this same row operation is

performed on A.

Theorem 1.9. Every elementary matrix is invertible, and the

inverse is also an elementary matrix.

Proof. If E is an elementary matrix, then E results by perform-

ing some row operation on I . Let E0 be the matrix that results

when the inverse of this operation is performed on I . Applying

the theorem 1.8. and using the fact that inverse row opera-

tions cancel the effect of each other, it follows that E0E = I

and EE0 = I. Thus, the elementary matrix E0 is the inverse of E.
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1.4 Diagonal and triangular matrices

A square matrix in which all the entries off the main diagonal

are zero is called a diagonal matrix.

Example.

1 0

0 −3

 ,


2 0 0 0

0 8 0 0

0 0 −1 0

0 0 0 4


,


1 0 0

0 1 0

0 0 1

 ,
0 0

0 0


A general n × n diagonal matrix D can be written as

d1 0 . . . 0

0 d2 . . . 0

...
...

...

0 0 . . . dn


(1).

A diagonal matrix is invertible if and only if all of its diagonal

entries are nonzero; in this case the inverse of (1) is

1/d1 0 . . . 0

0 1/d2 . . . 0

...
...

...

0 0 . . . 1/dn


= D−1 (2).

If D is the diagonal matrix (1) and k is a positive integer, then
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dk
1

0 . . . 0

0 dk
2
. . . 0

...
...

...

0 0 . . . dk
n


= Dk (3).

Example. If A =


1 0 0

0 −3 0

0 0 2

, then

A−1 =


1 0 0

0 −1/3 0

0 0 1/2

 , A5 =


1 0 0

0 −243 0

0 0 32

 , A−5 =


1 0 0

0 −1/243 0

0 0 1/32



A square matrix in which all the entries above the main

diagonal are zero is called lower triangular, and a square

matrix in which all the entries below the main diagonal are

zero is called upper triangular. A matrix that is either upper

triangular or lower triangular is called triangular.

Observe that diagonal matrices are both upper triangular and
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lower triangular since they have zeros below and above the main

diagonal. Observe also that a square matrix in row echelon form is

upper triangular since it has zeros below the main diagonal.

Theorem 1.10.(a) The transpose of a lower triangular matrix

is upper triangular, and the transpose of an upper triangular

matrix is lower triangular.

(b) The product of lower triangular matrices is lower trian-

gular, and the product of upper triangular matrices is upper

triangular.

(c) A triangular matrix is invertible if and only if its diagonal

entries are all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower

triangular, and the inverse of an invertible upper triangular

matrix is upper triangular.

Example. Consider the upper triangular matrices

A =


1 3 −1

0 2 4

0 0 5

 , B =


3 −2 2

0 0 −1

0 0 1


It follows from part (c) of the above theorem that the matrix

A is invertible but the matrix B is not. Moreover, the theorem

also tells us that A−1, AB, and BA must be upper triangular.



32

Also, A−1 =


1 −3/2 7/5

0 1/2 −2/5

0 0 1/5

 , AB =


3 −2 −2

0 0 2

0 0 5

 , BA =


3 5 −1

0 0 −5

0 0 5


Remark. If A is an n × n triangular matrix (upper

triangular, lower triangular, or diagonal), then det(A) is the

product of the entries on the main diagonal of the matrix; that

is, det(A) = a11a22 . . . ann .

A square matrix A is said to be symmetric if A = AT .

Example.


1 4 5

4 −3 0

5 0 7

 ,
 7 −3

−3 −5


All diagonal matrices are symmetric.

Algebraic properties of symmetric matrices

If A and B are symmetric matrices with the same size, and if

k is any scalar, then:
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(a) AT is symmetric.

(b) A + B and A - B are symmetric.

(c) kA is symmetric.

Theorem 1.11. The product of two symmetric matrices is

symmetric if and only if the matrices commute.

Proof. Let A and B be symmetric matrices with the same

size. Then it follows from the result (AB)T = BTAT and the

symmetry of A and B that

(AB)T = BTAT = BA.

Thus, (AB)T = AB if and only if AB = BA, that is, if and

only if A and B commute.

In general, a symmetric matrix need not be invertible. For

example, a diagonal matrix with a zero on the main diagonal is

symmetric but not invertible. But if a symmetric matrix hap-

pens to be invertible, then its inverse must also be symmetric.

Theorem 1.12. If A is an invertible symmetric matrix, then

A−1 is symmetric.

Proof Assume that A is symmetric and invertible. From the

facts that

(AT )−1 = (A−1)T and A = AT , we have
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(A−1)T = (AT )−1 = A−1

which proves that A−1 is symmetric.

Remark. Matrix products of the form AAT and ATA arise in a

variety of applications. If A is an m × n matrix, then AT is an

n × m matrix, so the products AAT and ATA are both square

matrices—the matrix AAT has size m × m, and the matrix

ATA has size n × n. Such products are always symmetric since

(AAT )T = (AT )TAT = AAT and (ATA)T = AT (AT )T = ATA.

Example. One can verify that AAT and ATA are symmetric

for the matrix

A =

1 −2 4

3 0 −5


Theorem 1.13. If A is an invertible matrix, then AAT and

ATA are also invertible.

Proof Since A is invertible, so is AT by Theorem 1.7. Thus

AAT and ATA are invertible, since they are the products of

invertible matrices.
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1.5 Introduction to system of linear

equations

In two dimensions a line in a rectangular xy-coordinate

system can be represented by an equation of the form

ax+ by = c(a, b not both 0) and in three dimensions a plane

in a rectangular xyz-coordinate system can be represented by

an equation of the form ax+ by + cz = d(a, b, c not all 0).

These are examples of “linear equations,” the first being a

linear equation in the variables x and y and the second a linear

equation in the variables x, y, and z.

More generally, we define a linear equation in the n variables

x1 , x2 , . . . , xn to be one that can be expressed in the form

a1x1 + a2x2 + . . . + anxn = b (1) where a1 , a2 , . . . , an and b are

constants, and the a′s are not all zero. In the special cases where

n = 2 or n = 3, we will often use variables without subscripts

and write linear equations as a1x+a2y = b(a1 , a2 not both 0)

a1x + a2y + a3z = b(a1 , a2 , a3 not all 0). In the

special case where b = 0, Equation (1) has the form

a1x1 + a2x2 + . . . + anxn = 0 which is called a homogeneous
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linear equation in the variables x1 , x2 , . . . , xn .

A finite set of linear equations is called a system of linear

equations or, more briefly, a linear system. The variables

are called unknowns. A general linear system of m equations

in the n unknowns x1 , x2 , . . . , xn can be written as

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . . . . . . . . . . . (2)

am1x1 + am2x2 + . . .+ amnxn = bm .

The above system of equations can be expressed as a single

matrix equation AX = B (3), where

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn


, X =



x1

x2

...

xn


, B =



b1

b2
...

bn


Any column vector X which satisfies the matrix equation (3)

is called the solution of the system. That is X is the column

vector consisting of the set of values of x1 , x2 , . . . , xn which

satisfy simultaneously the m equations in the system (2).

When B 6= 0, the system is said to be non-homogeneous.

When B = 0, the system is said to be homogeneous.
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A linear system may have exactly one solution, an infinite

number of solutions or no solution at all. Systems that have

one or more solutions are called consistent system and

systems that do not have a solution are called inconsistent

systems.

1.5.1 Linear system in two and three un-

knowns

Linear systems in two unknowns arise in connection with in-

tersections of lines. For example, consider the linear system

a1x + b1y = c1 , a2x + b2y = c2 in which the graphs of the

equations are lines in the xy-plane. Each solution (x, y) of this

system corresponds to a point of intersection of the lines, so there

are three possibilities:

1. The lines may be parallel and distinct, in which case there is no

intersection and consequently no solution.

2. The lines may intersect at only one point, in which case the

system has exactly one solution.

3. The lines may coincide, in which case there are infinitely
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many points of intersection (the points on the common line) and

consequently infinitely many solutions.

Thus, a consistent linear system of two equations in two

unknowns has either one solution or infinitely many solu-

tions—there are no other possibilities. The same is true

for a linear system of three equations in three unknowns

a1x+ b1y+ c1z = d1 , a2x+ b2y+ c2z = d2 , a3x+ b3y+ c3z = d3

in which the graphs of the equations are planes. The solutions

of the system, if any, correspond to points where all three planes

intersect, so again we see that there are only three possibilities—no

solutions, one solution, or infinitely many solutions.

Every system of linear equations has zero, one,

or infinitely many solutions. There are no other

possibilities.

Example 1. Solve the linear system

x− y = 1

2x+ y = 6.

Solution. We can eliminate x from the second equation by

using the first equation. This gives the system

x− y = 1
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3y = 4.

From the second equation we obtain y = 4/3 and on substitut-

ing this value in the first equation we obtain x = 1 + y = 7/3.

Thus, the system has the unique solution x = 7/3, y = 4/3.

Geometrically, this means that the lines represented by the equa-

tions in the system intersect at the single point (7/3, 4/3).

Example 2. Solve the linear system

x+ y = 4

3x+ 3y = 6.

Solution. We can eliminate x from the second equation by

using the first equation. This yields the simplified system

x+ y = 4

0 = −6.

The second equation is contradictory, so the given system has

no solution.

Geometrically, this means that the lines corresponding to the

equations in the original system are parallel and distinct.

Example 3. Solve the linear system

4x− 2y = 1

16x− 8y = 4.
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Solution. We can eliminate x from the second equation by

using the first equation. This yields the system

4x− 2y = 1

0 = 0.

The second equation does not impose any restrictions on x and

y and hence can be omitted. Thus, the solutions of the system

are those values of x and y that satisfy the single equation

4x− 2y = 1.

Geometrically, this means the lines corresponding to the two

equations in the original system coincide.

One way to describe the solution set is to solve this equation

for x in terms of y to obtain x = (1 + 2y)/4, i.e; x = 1
4

+ 1
2
y

and then assign an arbitrary value t (called a parameter) to y.

Thus, we obtain x = 1
4

+ 1
2
t, y = t. This gives infinite number

of solutions for the given system.

Example 4. Solve the linear system

x− y + 2z = 5

2x− 2y + 4z = 10

3x− 3y + 6z = 15

Solution. This system can be solved by inspection, since
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the second and third equations are multiples of the first.

Geometrically, this means that the three planes coincide and that those

values of x, y, and z that satisfy the equation x − y + 2z = 5

automatically satisfy all three equations. Thus, it is enough to

find the solutions of x− y + 2z = 5.

We can do this by first solving this equation for x in terms of

y and z, then assigning arbitrary values r and s (parameters) to

y and z respectively, and then expressing the solution by the

three parametric equations

x = 5 + r − 2s, y = r, z = s.

Specific solutions can be obtained by choosing numerical values

for the parameters r and s. For example, taking r = 1 and

s = 0 yields the solution (6, 1, 0).

1.5.2 Non-homogeneous system

Consider the following m equations in n unknowns.

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . . . . . . . . . . .
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am1x1 + am2x2 + . . .+ amnxn = bm .

The above system of equations can be expressed as a single

matrix equation AX = B, where

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn


, X =



x1

x2

...

xn


, B =



b1

b2
...

bm


The matrix [AB], obtained by placing the column matrix B to

the right of the matrix A is called the augmented matrix for

the system.

AB =



a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

. . . . . . . . . . . . . . .

am1 am2 . . . amn bm


.

The algebraic operations to perform to solve the system are:

1. Multiply an equation through by a nonzero constant.

2. Interchange two equations.

3. Add a constant times one equation to another.

Correspondingly these are the following operations to perform

to solve the system on the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
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2. Interchange two rows.

3. Add a constant times one row to another.

These are called elementary row operations on a matrix.

Row reduced echelon form

By a sequence of elementary row operations, the augumented

matrix of a linear system can be transformed to a matrix that

have the following properties:

1. If a row does not consist entirely of zeros, then the first

nonzero number in the row is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then

they are grouped together at the bottom of the matrix.

3. In any two successive rows that do not consist entirely of

zeros, the leading 1 in the lower row occurs farther to the right

than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere

else in that column.

A matrix that has the first three properties is said to be in

row reduced echelon form.

Algorithm for reducing to row echelon form
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Step 1. Locate the leftmost column that does not consist entirely of zeros.

Step 2. Interchange the top row with another row, if necessary, to bring a

nonzero entry to the top of the column found in Step 1.

Step 3. If the entry that is now at the top of the column found in Step 1

is a, multiply the first row by 1/a in order to introduce a leading 1.

Step 4. Add suitable multiples of the top row to the rows below so that

all entries below the leading 1 become zeros.

Step 5. Now cover the top row in the matrix and begin again with Step

1 applied to the submatrix that remains. Continue in this way until the

entire matrix is in row echelon form.

Step 6. Beginning with the last nonzero row and working upward, add

suitable multiples of each row to the rows above to introduce zeros above

the leading 1’s.

Example 5. Reduce the matrix A =



1 2 1

3 1 −2

4 −3 −1

2 4 2


to echelon

form.
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Solution. A =



1 2 1

3 1 −2

4 −3 −1

2 4 2


R2 → R2 − 3R1 , R3 → R3 − 4R1 , R4 → R4 − 2R1

∼=



1 2 1

0 −5 −5

0 −11 −5

0 0 0


R2 → −1

5
R2

∼=



1 2 1

0 1 1

0 −11 −5

0 0 0


R3 → R3 + 11R2

∼=



1 2 1

0 1 1

0 0 6

0 0 0


R3 → 1

6
R3
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∼=



1 2 1

0 1 1

0 0 1

0 0 0


.

1.6 Gauss Elimination method for

solving a system of linear equa-

tions

Example 6. Solve the below system by Gauss elimination

method.

x+ 2y + z = 2

3x+ y − 2z = 1

4x− 3y − z = 3

2x+ 4y + 2z = 4.

Solution. Here A =



1 2 1

3 1 −2

4 −3 −1

2 4 2


, B =



2

1

3

4


.
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So augmented matrix [AB] =



1 2 1 2

3 1 −2 1

4 −3 −1 3

2 4 2 4


.

Reduce the [AB] to row echelon form.

That gives [AB] =



1 2 1 2

0 1 1 1

0 0 1 1

0 0 0 0


. (do as in example 5.)

The corresponding system of equations in matrix form is

1 2 1

3 1 −2

4 −3 −1

2 4 2




x

y

z

 =



2

1

1

0


, which is equivalent to the equa-

tions x+ 2y + z = 2, y + z = 1, z = 1.

By back substitution, we get the solution as x = 1, y = 0, z = 1.

Example 7. Solve the below system by Gauss elimination

method.

−2x3 + 7x5 = 12

2x1 + 4x2 − 10x3 + 6x4 + 12x5 = 28

2x1 + 4x2 − 5x3 + 6x4 − 5x5 = −1.
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Solution. Here the augmented matrix is

[AB] =


0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1

 ∼=


2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 −1

 ∼=


1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 −1

 ∼=


1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −29

 ∼=


1 2 −5 3 6 14

0 0 1 0 −7/2 −6

0 0 5 0 −17 −29

 ∼=


1 2 −5 3 6 14

0 0 1 0 −7/2 −6

0 0 5 0 −17 −29

 ∼=


1 2 −5 3 6 14

0 0 1 0 −7/2 −6

0 0 0 0 1/2 1

 ∼=


1 2 −5 3 6 14

0 0 1 0 −7/2 −6

0 0 0 0 1 2

,

which is now in echelon form.

Corresponding matrix form is


1 2 −5 3 6

0 0 1 0 −7/2

0 0 0 0 1





x1

x2

x3

x4

x5


=


14

−6

2

 which is equivalent to

x1 + 2x2 − 5x3 + 3x4 + 6x5 = 14
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x3 − 7
2
x5 = −6

x5 = 2. By back substitution, x5 = 2, x3 = 1.

Assigning x2 = r, x4 = s, the solution is

x1 = 7− 2r − 3s, x2 = r, x3 = 1, x4 = s, x5 = 2.

Example 8. Solve the below system by Gauss Jordan

elimination method.

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution. Here the augmented matrix is

[AB] =



1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 −1

0 0 5 10 0 15 5

2 6 0 8 4 18 6


∼=



1 3 −2 0 2 0 0

0 0 −1 −2 0 −3 −1

0 0 5 10 0 15 5

0 0 4 8 0 18 6


∼=



1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 5 10 0 15 5

0 0 4 8 0 18 6


∼=



1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 0 0

0 0 0 0 0 6 2


∼=



50

1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 6 2

0 0 0 0 0 0 0


∼=



1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 1 1/3

0 0 0 0 0 0 0


∼=



1 3 −2 0 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 1/3

0 0 0 0 0 0 0


∼=



1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 1/3

0 0 0 0 0 0 0


, which

is now in echelon form.

Corresponding matrix form is



1 3 0 4 2 0

0 0 1 2 0 0

0 0 0 0 0 1

0 0 0 0 0 0





x1

x2

x3

x4

x5

x6


=



0

0

1/3

0


which is equivalent to

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 1/3.

Solving , we obtain x1 = −3x2 − 4x4 − 2x5x3 = −2x4x6 = 1/3

Finally, by assigning the free variables x2 , x4 , x5 arbitrary
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values r, s, t, respectively, we get

x1 = −3r − 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1.

Example 9. Solve the below system by Gauss Jordan

elimination method.

x1 + 2x2 − 3x3 − 4x4 = 6

x1 + 3x2 + x3 − 2x4 = 4

2x1 + 5x2 − 2x3 − 5x4 = 10

Solution. Here the augmented matrix is

[AB] =


1 2 −3 −4 6

1 3 1 −2 4

2 5 −2 −5 10

. The row reduced echelon form

is

[AB] ∼=


1 0 −11 0 10

0 1 4 0 −2

0 0 0 1 0

.

Corresponding matrix form is
1 0 −11 0

0 1 4 0

0 0 0 1





x1

x2

x3

x4


=


10

−2

0

 which is equivalent to

x1 − 11x3 = 10

x2 + 4x3 = −2
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x4 = 0.

Assinging x3 = t, we get the general solution as

x1 = 11t+ 10, x2 = −4t− 2, x3 = t, x4 = 0.

Example 10. Suppose that the matrices below are augmented

matrices for linear systems in the unknowns x1 , x2 , x3 , x4 .

Discuss the existence and uniqueness of solutions to the

corresponding linear systems.

A =



1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 0 1


B =



1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 0 0



C =



1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 1 0


.
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1.7 Homogeneous system of linear

equations

A system of linear equations is said to be homogeneous if the

constant terms are all zero; that is, the system has the form

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

. . . . . . . . . . . . (2)

am1x1 + am2x2 + . . .+ amnxn = 0.

Here B = 0, so the matrix A and the augmented matrix

[AB] are the same. Every homogeneous system of lin-

ear equations is consistent because all such systems have

x1 = 0, x2 = 0, ..., xn = 0 as a solution. This solution is called

the trivial solution; if there are other solutions, they are called

nontrivial solutions.

Because a homogeneous linear system always has the trivial

solution, there are only two possibilities for its solutions:

� The system has only the trivial solution.

� The system has infinitely many solutions in addition to the

trivial solution.
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Theorem 1.14.Free Variable Theorem for Homogeneous

Systems If a homogeneous linear system has n unknowns, and

if the reduced row echelon form of its augmented matrix has r

nonzero rows, then the system has n - r free variables.

Theorem. A homogeneous linear system with more unknowns

than equations has infinitely many solutions.

Proof. If a homogeneous linear system has m equations in n

unknowns, and if m < n, then it must also be true that r <

n. This being the case, the theorem implies that there is at

least one free variable, and this implies that the system has

infinitely many solutions.

Example 11. Solve the below system .

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

Solution. Here the augmented matrix is
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[AB] =



1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 0

0 0 5 10 0 15 0

2 6 0 8 4 18 0


. Continuing as in exam-

ple 8., we get the echelon form of this matrix as

1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0


. Corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 0.

Solving , we obtain x1 = −3x2 − 4x4 − 2x5x3 = −2x4x6 = 0.

Finally, by assigning the free variables x2 , x4 , x5 arbitrary

values r, s, t, respectively, we get x1 = −3r − 4s − 2t, x2 =

r, x3 = −2s, x4 = s, x5 = t, x6 = 0.

Example 12. Solve the below system .

x1 − 2x2 + x3 − x4 = 0

x1 + x2 − 2x3 + 3x4 = 0

4x1 + x2 − 5x3 + 8x4 = 0

5x1 − 7x2 + 2x3 − x4 = 0
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Solution. After reduucing to echelon form the corresponding

system of equations in the matrix form will be

1 0 −1 5/3

0 1 −1 4/3

0 0 0 0

0 0 0 0





x1

x2

x3

x4


=



0

0

0

0


Solving this and by substituting x3 = r, x4 = s, we get infinite

number of solutions.

The general solution is x1 = r− 5
3
s, x2 = r− 4

3
s, x3 = r, x4 = s.

1.8 More on linear systems

Theorem 1.15. A system of linear equations has zero, one,

or infinitely many solutions. There are no other possibilities.

Proof. If Ax = b is a system of linear equations, exactly one

of the following is true:

(a) the system has no solutions, (b) the system has exactly

one solution, or (c) the system has more than one solution.

The proof will be complete if we can show that the system has

infinitely many solutions in case (c).
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Assume that Ax = b has more than one solution, and let x0

= x1 - x2 , where x1 and x2 are any two distinct solutions.

Because x1 and x2 are distinct, the matrix x0 is nonzero.

Moreover, Ax0 = A(x1 - x2) = Ax1 - Ax2 = b - b = 0.

If we now let k be any scalar, then

A(x1 + kx0) = Ax1 + A(kx0) = Ax1 + k(Ax0) = b + k0 = b

+ 0 = b.

But this says that x1 + kx0 is a solution of Ax = b. Since x0 is

nonzero and there are infinitely many choices for k, the system

Ax = b has infinitely many solutions.

Solving Linear Systems by Matrix Inversion

Theorem 1.16. If A is an invertible n × n matrix, then for

each n × 1 matrix b, the system of equations Ax = b has

exactly one solution, namely, x = A−1b.

Proof. Since A(A−1b) = b, it follows that x = A−1b is a

solution of Ax = b.

To show that this is the only solution, we will assume that x0

is an arbitrary solution and then show that x0 must be the

solution A−1b.

If x0 is any solution of Ax = b, then Ax0 = b. Multiplying
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both sides of this equation by A−1, we obtain x0 = A−1b.

Theorem 1.17. Equivalent Statements

If A is an n × n matrix, then the following statements are

equivalent:

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In .

(d) A is expressible as a product of elementary matrices.

Proof.

(a) ⇒ (b) Assume A is invertible and let x0 be any solution of

Ax = 0. Multiplying both sides of this equation by the matrix

A−1 gives A−1(Ax0) = A−10, or (A−1A)x0 = 0, or Ix0 = 0, or

x0 = 0. Thus, Ax = 0 has only the trivial solution.

(b) ⇒ (c) Let Ax = 0 be the matrix form of the system

a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

. . . . . . . . . . . . (1)

an1x1 + an2x2 + . . .+ annxn = 0.

and assume that the system has only the trivial solution. If

we solve by Gauss–Jordan elimination, then the system of
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equations corresponding to the reduced row echelon form of

the augmented matrix will be

x1 = 0

x2 = 0

. . . (2)

xn = 0.

Thus the augmented matrix



a11 a12 . . . a1n 0

a21 a22 . . . a2n 0

. . . . . . . . . . . . . . .

an1 an2 . . . ann 0


for (1) can be reduced to the augmented matrix

1 a12 . . . 0 0

0 1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0


for (2) by a sequence of elementary

row operations. If we disregard the last column (all zeros) in

each of these matrices, we can conclude that the reduced row

echelon form of A is In .

(c) ⇒ (d) Assume that the reduced row echelon form of A

is In , so that A can be reduced to In by a finite sequence of

elementary row operations. By theorem 1.8, each of these
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operations can be accomplished by multiplying on the left

by an appropriate elementary matrix. Thus we can find

elementary matrices E1 , E2 ,...,Ek
such that

E
k

··· E2E1A = In (3).

By theorem 1.9, E1 , E2 ,...,Ek
are invertible. Multiplying both

sides of Equation (3) on the left successively by E−1
k

,...,E−1
2

,

E−1
1

we obtain

A = E−1
1

E−1
2

··· E−1
k

In = E−1
1

E−1
2

··· E−1
k

(4).

By theorem 1.9, this equation expresses A as a product of

elementary matrices.

(d)⇒ (a) If A is a product of elementary matrices, then from

the remark 2, properties and theorem 1.9, the matrix A is a

product of invertible matrices and hence is invertible.

A Method for Inverting Matrices

An application of Theorem 1.17.

Inversion Algorithm:

To find the inverse of an invertible matrix A, find a sequence

of elementary row operations that reduces A to the identity

and then perform that same sequence of operations on In to

obtain A−1.



61

Example: Find the inverse of


1 2 3

2 5 3

1 0 8

.

We want to reduce A to the identity matrix by row operations

and simultaneously apply these operations to I to produce

A−1. To accomplish this we will adjoin the identity matrix to

the right side of A, thereby producing a partitioned matrix

of the form [A|I]. Then we will apply row operations to this

matrix until the left side is reduced to I ; these operations will

convert the right side to A−1, so the final matrix will have the

form [I|A−1]. Now the computation:
1 2 3 1 0 0

2 5 3 0 1 0

1 0 8 0 0 1




1 2 3 1 0 0

0 1 −3 −2 1 0

0 −2 5 −1 0 1


We added -2 times the first row to the second and -1 times the

first row to the third.
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1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 −1 −5 2 1


We added 2 times the second row to the third.

1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 1 5 −2 −1


We multiplied the third row by -1.

1 2 0 −14 6 3

0 1 0 13 −5 −3

0 0 1 5 −2 −1


We added 3 times the third row to the second and -3 times the

third row to the first.
1 0 0 −40 16 9

0 1 0 13 −5 −3

0 0 1 5 −2 −1


We added -2 times the second row to the first.

Thus, A−1 =


−40 16 9

13 −5 −3

5 −2 −1

.

Example. Consider the system of linear equations

x1 + 2x2 + 3x3 = 5
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2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 17

In matrix form this system can be written as Ax = b, where

A =


1 2 3 1 0 0

2 5 3 0 1 0

1 0 8 0 0 1

 , X =


x1

x2

x3

 , B =


5

3

17


In the above example, we showed that A is invertible and

A−1 =


−40 16 9

13 −5 −3

5 −2 −1

.

Thus, the solution of the system is

x = A−1b =


−40 16 9

13 −5 −3

5 −2 −1




5

3

17

 =


1

−1

2

.

Hence, x1 = 1, x2 = −1, x3 = 2.

Example: Show that the given below matrix is not invertible.
1 6 4

2 4 −1

1 2 5

.

Proceeding
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1 6 4 1 0 0

2 4 −1 0 1 0

1 2 5 0 0 1




1 6 4 1 0 0

0 −8 −9 −2 1 0

0 8 9 1 0 1


We added -2 times the first row to the second and added the

first row to the third.
1 6 4 1 0 0

0 −8 −9 −2 1 0

0 0 0 −1 1 1


We added the second row to the third.

Since we have obtained a row of zeros on the left side, A is not

invertible.

Example: Use Theorem 1.17. to determine whether the given

homogeneous systems have nontrivial solutions.

(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0

x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0

2x1 + 4x2 − x3 = 0
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− x1 + 2x2 + 5x3 = 0

Solution. From parts (a) and (b) of Theorem 1.17. a ho-

mogeneous linear system has only the trivial solution if and

only if its coefficient matrix is invertible. From the above

examples the coefficient matrix of system (a) is invertible and

that of system (b) is not. Thus, system (a) has only the trivial

solution while system (b) has nontrivial solutions.

Linear Systems with a Common Coefficient Matrix

One is concerned with solving a sequence of systems

Ax = b1 , Ax = b2 , Ax = b3 , ..., Ax = b
k

each of which has the same square coefficient matrix A. If A

is invertible, then the solutions x1 = A−1b1 , x2 = A−1b2 , x3 =

A−1b3 , ..., xk = A−1b
k

can be obtained with one matrix inversion and k matrix

multiplications. An efficient way to do this is to form the

partitioned matrix[
A | b1 | b2 | . . . b

k

]
(1)

in which the coefficient matrix A is “augmented” by all k of

the matrices b1 , b2 , ..., bk , and then reduce (1) to reduced row

echelon form by Gauss–Jordan elimination. In this way we
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can solve all k systems at once. This method has the added

advantage that it applies even when A is not invertible.

Example. Solve the systems

(a) x1 + 2x2 + 3x3 = 4 2x1 + 5x2 + 3x3 = 5 x1 + 8x3 = 9

(b) x1 + 2x2 + 3x3 = 1 2x1 + 5x2 + 3x3 = 6 x1 + 8x3 = −6

Solution. The two systems have the same coefficient matrix.

If we augment this coefficient matrix with the columns of

constants on the right sides of these systems, we obtain
1 2 3 4 1

2 5 3 5 6

1 0 8 9 −6


Reducing this matrix to reduced row echelon form we get

1 0 1 1 2

0 1 0 0 1

0 0 1 1 −1


It follows from the last two columns that the solution of system

(a) is x1 = 1, x2 = 0, x3 = 1 and the solution of system (b) is

x1 = 2, x2 = 1, x3 = −1.

Theorem 1.18. Let A be a square matrix.

(a) If B is a square matrix satisfying BA = I, then B = A−1.

(b) If B is a square matrix satisfying AB = I, then B = A−1.
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Proof. (a) Assume that BA = I . If we can show that A is

invertible, the proof can be completed by multiplying BA = I

on both sides by A−1 to obtain

BAA−1 = IA−1 or BI = IA−1 or B = A−1.

To show that A is invertible, it suffices to show that the system

Ax = 0 has only the trivial solution. Let x0 be any solution of

this system. If we multiply both sides of Ax0 = 0 on the left

by B, we obtain

BAx0 = B0 or Ix0 = 0 or x0 = 0.

Thus, the system of equations Ax = 0 has only the trivial

solution.

Similarly (b).

Theorem 1.19. Equivalent Statements

If A is an n × n matrix, then the following statements are

equivalent:

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In .

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.
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(f) Ax = b has exactly one solution for every n × 1 matrix b

Proof.

Since we proved in Theorem 1.17 that (a), (b), (c), and (d )

are equivalent, it will be sufficient to prove that

(a) ⇒ (f) ⇒ (e) ⇒ (a).

(a) ⇒ (f) Since A(A−1b) = b, it follows that x = A−1b is a

solution of Ax = b.

To show that this is the only solution, we will assume that x0

is an arbitrary solution and then show that x0 must be the

solution A−1b.

If x0 is any solution of Ax = b, then Ax0 = b. Multiplying

both sides of this equation by A−1, we obtain x0 = A−1b.

(f) ⇒ (e) This is almost self-evident, for if Ax = b has exactly

one solution for every n × 1 matrix b, then Ax = b is consistent

for every n × 1 matrix b.

(e) ⇒ (a) If the system Ax = b is consistent for every n × 1

matrix b, then, in particular, this is so for the systems
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Ax =



1

0

0

...

0


Ax =



0

1

0

...

0


. . . Ax =



0

0

0

...

1


Let x1 , x2 , ..., xn be solutions of the respective systems, and let

us form an n × n matrix C having these solutions as columns.

Thus C has the form

C =

[
x1 | x2 | . . . | xn

]
.

The successive columns of the product AC will be

Ax1 , Ax2 , ..., Axn .Thus,

AC =

[
Ax1 | Ax2 | . . . | Axn

]
=



1 0 . . . 0

0 1 . . . 0

0 0 . . . 0

...
...

...

0 0 . . . 1


= I

By part (b) of the above theorem, it follows that C = A−1.

Thus, A is invertible.

Theorem 1.20. Let A and B be square matrices of the same

size. If AB is invertible, then A and B must also be invertible.

Proof. We will show first that B is invertible by showing that
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the homogeneous system Bx = 0 has only the trivial solution.

If we assume that x0 is any solution of this system, then

(AB)x0 = A(Bx0) = A0 = 0

so x0 = 0 by parts (a) and (b) of the above theorem applied to

the invertible matrix AB. But the invertibility of B implies the

invertibility of B−1, which in turn implies that

(AB)B−1 = A(BB−1) = AI = A

is invertible since the left side is a product of invertible

matrices. This completes the proof.

To answer the problem: Let A be a fixed m × n matrix. Find

all m × 1 matrices b such that the system of equations Ax =

b is consistent, we have

if A is an invertible matrix, Theorem 1.16 completely solves

this problem by asserting that for every m × 1 matrix b, the

linear system Ax = b has the unique solution x = A−1b. If

A is not square, or if A is square but not invertible, then

Theorem 1.16 does not apply. In these cases b must usually

satisfy certain conditions in order for Ax = b to be consistent.

Example. What conditions must b1 , b2 , and b3 satisfy in order

for the system of equations
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x1 + x2 + 2x3 = b1

x1 + x3 = b2

2x1 + x2 + 3x3 = b3 to be consistent?

Solution. The augmented matrix is
1 1 2 b1

1 0 1 b2

2 1 3 b3


which can be reduced to row echelon form as follows:

1 1 2 b1

0 −1 −1 b2 − b1

0 −1 −1 b3 − 2b1




1 1 2 b1

0 −1 −1 b1 − b2

0 −1 −1 b3 − 2b1




1 1 2 b1

0 −1 −1 b1 − b2

0 0 0 b3 − b2 − b1


From the third row, it is clear that the system has a solution if

and only if b1 , b2 , and b3 satisfy the condition b3− b2− b1 = 0 or

b3 = b1 + b2 . To express this condition another way, Ax = b is
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consistent if and only if b is a matrix of the form b =


b1

b2

b1 + b2


where b1 , b2 are arbitrary.

Example. What conditions must b1 , b2 , and b3 satisfy in order

for the system of equations

x1 + 2x2 + 3x3 = b1

2x1 + 5x2 + 3x3 = b2

1x1 + 8x3 = b3 to be consistent?

Solution. The augmented matrix is
1 2 3 b1

2 5 3 b2

1 0 8 b3

.

Reducing this to reduced row echelon we get
1 0 0 −40b1 16b2 9b3

0 1 0 13b1 −5b2 −3b3

0 0 1 5b1 −2b2 −1b3


In this case there are no restrictions on b1 , b2 , and b3 , so the

system has the unique solution x1 = −40b1 + 16b2 + 9b3 , x2 =

13b1−5b2−3b3 , x3 = 5b1−2b2−b3 for all values of b1 , b2 , and b3 .
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1.9 Matrix Transformations

An “ordered n-tuple” is a sequence of n real num-

bers, a solution of a linear system in n unknowns, say

x1 = s1 , x2 = s2 , . . . , xn = sn can be expressed as the ordered

n-tuple (s1 , s2 , . . . , sn).

If n = 2, then the n-tuple is called an “ordered pair,” and if n

= 3, it is called an “ordered triple.” Two ordered n-tuples are

same,if they list the same numbers in the same order. Thus,

for example, (1, 2) and (2, 1) are different ordered pairs.

The set of all ordered n-tuples of real numbers is denoted by

the symbol Rn. The elements of Rn are called vectors and are

denoted as a, b, v, w, and x or in hand written form as −→a ,

−→
b , −→v , −→w and −→x . Ordered n-tuples can also be denoted in

matrix notation as column vectors. For example,



s1

s2
...

sn


can be used as an alternative to (s1 , s2 , . . . , sn) which is called

the comma-delimited form of a vector and the ordered

n-tuple as a matrix is called column-vector form.
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For each i = 1, 2,...,n, let e
i

denote the vector in Rn with a 1

in the ith position and zeros elsewhere. In column form these

vectors are

e1 =



1

0

...

0


, e2 =



0

1

...

0


, . . . , en =



0

0

...

1


We call the vectors e1 , e2 , . . . , en the standard basis vectors for

Rn. For example, the vectors

e1 =


1

0

0

 , e2 =


0

1

0

 , e3 =


0

0

1


are the standard basis vectors for R3 .

The vectors e1 , e2 , . . . , en in Rn are termed “basis vectors”

because all other vectors in Rn are expressible in exactly one

way as a linear combination of them. For example, if x=



x1

x2

...

xn


then we can express x as x = x1e1 + x2e2 + . . .+ xnen .

If f is a function with domain Rn and codomain Rm, then
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we say that f is a transformation from Rn to Rm or that f

maps from Rn to Rm, which we denote by writing f : Rn →

Rm. In the special case where m = n, a transformation is

sometimes called an operator on Rn.

Suppose that we have the system of linear equations

w1 = a11x1 + a12x2 + . . .+ a1nxn

w2 = a21x1 + a22x2 + . . .+ a2nxn

. . . . . . . . . . . .

wm = am1x1 + am2x2 + . . .+ amnxn (1).

The above system of equations can be expressed as a single

matrix equation w=Ax (2),

whereA =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn


, x=



x1

x2

...

xn


, w=



w1

w2

...

wn


(3)

Although we could view (2) as a compact way of writing linear

system (1), we will view it instead as a transformation that

maps a vector x in Rn into the vector w in Rm by multiplying

x on the left by A. We call this a matrix transformation (or

matrix operator in the special case where m = n). We denote
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it by T
A

: Rn → Rm.

This notation is useful when it is important to make the

domain and codomain clear. The subscript on T
A

serves as

a reminder that the transformation results from multiplying

vectors in Rn by the matrix A. In situations where specifying

the domain and codomain is not essential, we will express (3)

as w = T
A

(x). (4)

We call the transformation T
A

multiplication by A. On

occasion we will find it convenient to express (4) in the

schematic form x
T
A−→ w (5)

which is read “T
A

maps x into w.”

Example. The transformation from R4 to R3 defined by the

equations

w1 = 2x1 − 3x2 + x3 − 5x4

w2 = 4x1 + x2 − 2x3 + x4

w3 = 5x1 − x2 + 4x3

can be expressed in matrix form as
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w1

w2

...

wn


=


2 −3 1 −5

4 1 −2 1

5 −1 4 0





x1

x2

...

xn


from which we see that the transformation can be interpreted

as multiplication by A =


2 −3 1 −5

4 1 −2 1

5 −1 4 0

.

If x=



1

−3

0

2


, then

T
A

(x)= w=


w1

w2

w3

 = Ax =


2 −3 1 −5

4 1 −2 1

5 −1 4 0





1

−3

0

2


=


1

3

8

.

Zero Transformations

If 0 is the m × n zero matrix, then for any x ∈ Rn,

T0(x) = 0x = 0 ∈ Rm. So multiplication by zero maps every

vector in Rn into the zero vector in Rm. We call T0 the zero

transformation from Rn to Rm.
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Identity Operators

If I is the n × n identity matrix, then for any x ∈ Rn,

T
I
(x) = Ix = x ∈ Rn. So multiplication by I maps every vector

in Rn to itself. We call T
I

the identity operator on Rn.

Basic properties of matrix transformations

Theorem 1.21. For every matrix A the matrix transformation

T
A

: Rn → Rm has the following properties for all vectors u and

v and for every scalar k:

(a) T
A

(0) = 0

(b) T
A

(ku) = kT
A

(u) [Homogeneity property]

(c) T
A

(u + v) = T
A

(u) + T
A

(v) [Additivity property]

(d) T
A

(u - v) = T
A

(u) - T
A

(v)

Proof. Let A be an m × n matrix. By applying the properties

of matrix multiplication, we get the following results:

(a) For 0 ∈ Rn, T
A

(0)=A0=0 ∈ Rm.

(b) For u ∈ Rn and k ∈ R, T
A

(ku)=A(ku)=k(Au)=kT
A

(u).

(c) For u, v ∈ Rn,

T
A

(u + v)=A(u + v)=Au+Av=T
A

(u) + T
A

(v).

(d) For u, v ∈ Rn,

T
A

(u - v)=A(u - v)=Au-Av=T
A

(u) - T
A

(v).
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Remark. A matrix transformation maps a linear combination

of vectors in Rn into the corresponding linear combination of

vectors in Rm in the sense that

T
A

(k1u1 + k2u2 +···+ krur) = k1TA(u1) + k2TA(u2) +···+

krTA(ur).

Theorem 1.22. T
A

: Rn → Rm is a matrix transformation if

and only if the following relationships hold for all vectors u

and v in Rn and for every scalar k:

(i) T (u + v) = T (u) + T (v) [Additivity property]

(ii) T (ku) = kT (u) [Homogeneity property]

Proof. By applying the properties of matrix multiplication, we

get for u, v ∈ Rn and k ∈ R

T (u + v)=T
A

(u + v)=A(u + v)=Au+Av=T
A

(u) + T
A

(v)=

T (u) + T (v) and

T (ku)=T
A

(ku)=A(ku)=k(Au)=kT
A

(u)=kT (u).

Thus if T is a matrix transformation, it satisfies the properties

(i) and (ii).

Conversely, assume that properties (i) and (ii) hold. We must

show that there exists an m × n matrix A such that T (x) =

Ax for every vector x ∈ Rn. Then,
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T (k1u1 + k2u2 +···+ krur) = k1T (u1) + k2T (u2) +···+ krT (ur)

for all scalars k1 , k2 ,...,kr and all vectors u1 , u2 ,..., ur in Rn.

LetA be the matrixA =

[
T (e1) | T (e2) |T (e3) | . . . | T (en)

]
where e1 , e2 , . . . , en are the standard basis vectors for Rn. Then

it follows that Ax is a linear combination of the columns of A in

which the successive coefficients are the entries x1 , x2 , . . . , xn of

x. That is, Ax = x1Te1 +x2Te2 + . . .+xnTen Using the above

remark, we can rewrite this as Ax = T (x1e1 +x2e2 + . . .+xnen)

= T (x) which completes the proof.

Remark. The additivity and homogeneity properties in

the above theorem are called linearity conditions, and a

transformation that satisfies these conditions is called a linear

transformation.

Remark. Every linear transformation from Rn → Rm is a

matrix transformation,and conversely, every matrix transfor-

mation from Rn → Rm is a linear transformation.

Theorem 1.23. If T
A

: Rn → Rm and T
B

: Rn → Rm are

matrix transformations, and if T
A

(x) = T
B

(x) for every vector

x in Rn, then A = B.

Proof. Since T
A

(x) = T
B

(x) for every vector x in Rn, then Ax
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= Bx for every vector x in Rn.

Let e1 , e2 , . . . , en be the standard basis vectors for Rn. Then

Ae
j

= Be
j

for all j=1,2,...,n.

Since every entry of e
j

is 0 except for the j th, which is 1, it

follows that Ae
j

is the j th column of A and Be
j

is the j th

column of B. Thus, Ae
j

= Be
j

implies that corresponding

columns of A and B are the same, and hence that A = B.

Remark. Every m × n matrix A produces exactly one ma-

trix transformation (multiplication by A) and every matrix

transformation from Rn to Rm arises from exactly one m ×

n matrix; we call that matrix the standard matrix for the

transformation.

We showed that if e1 , e2 , . . . , en are the standard basis vectors

for Rn (in column form), then the standard matrix for a linear

transformation T : Rn → Rm is given by the formula

A =

[
T (e1) | T (e2) |T (e3) | . . . | T (en)

]

Finding the Standard Matrix for a Matrix Transformation

Step 1. Find the images of the standard basis vectors

e1 , e2 , . . . , en for Rn.
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Step 2. Construct the matrix that has the images obtained in

Step 1 as its successive columns. This matrix is the standard

matrix for the transformation.

Example . Find the standard matrix A for the linear

transformation T : R2 → R2 defined by the formula

T


x1

x2


 =


2x1 + x2

x1 − 3x2

−x1 + x2

. Also find T (1, 4) by matrix

multiplication.

Let e1 , e2 be the standard basis for R2. Then,

T (e1) = T


1

0


 =


2.1 + 0

1− 3.0

−1 + 0

 =


2

1

−1



T (e2) = T


0

1


 =


2.0 + 1

0− 3.1

−0 + 1

 =


1

−3

1


Hence the standard matrix A for the given linear transforma-

tion is

A =

[
T (e1) | T (e2)

]
=


2 1

1 −3

−1 1





83

Now, T (1, 4) = T


1

4


 = A


1

4


 =


2 1

1 −3

−1 1


1

4



=


6

−11

3

 = (6,−11, 3).

Example. Rewrite the transformation T (x1 , x2) =

(3x1 + x2 , 2x1 − 4x2) in column-vector form and find its

standard matrix.

T


x1

x2


 =

 3x1 + x2

2x1 − 4x2

 =

3 1

2 −1


x1

x2

.

Thus the standard matrix is

3 1

2 −1

.

Question. Find the standard matrix for the operator

T : R3 → R3 defined by w1 = 3x1 + 5x2 − x3 , w2 =

4x1 − x2 + x3 , w3 = 3x1 + 2x2 − x3 and then compute

T (−1, 2, 4) by directly substituting in the equations and then

by matrix multiplication.

Answer.


3

−2

−3

.
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MODULE

TWO

GENERAL VECTOR SPACES

2.1 Vector spaces

Let V be an arbitrary nonempty set of objects on which two

operations are defined: addition, and multiplication by num-

bers called scalars.By addition we mean a rule for associating

with each pair of objects u and v in V an object u + v, called

the sum of u and v; by scalar multiplication we mean a

rule for associating with each scalar k and each object u in V

an object ku, called the scalar multiple of u by k.

85
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If the following axioms are satisfied by all objects u, v, w in

V and all scalars k and m, then we call V a vector space and

we call the objects in V vectors.

1. If u and v are objects in V, then u + v is in V.

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. There is an object 0 in V, called a zero vector for V, such

that 0 + u = u + 0 = u for all u in V.

5. For each u in V, there is an object -u in V, called a

negative of u, such that u + (-u) = (-u) + u = 0.

6. If k is any scalar and u is any object in V, then ku is in V.

7. k(u + v) = ku + kv

8. (k + m)u = ku + mu

9. k(mu) = (km)(u)

10. 1u = u

Vector spaces with real scalars will be called real vector spaces

and those with complex scalars will be called complex vector

spaces.For now, we will focus exclusively on real vector spaces,

which we will refer to simply as “vector spaces.”

To Show That a Set with Two Operations Is a Vector Space
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Step 1. Identify the set V of objects that will become vectors.

Step 2. Identify the addition and scalar multiplication opera-

tions on V.

Step 3. Verify Axioms 1 and 6; that is, adding two vectors in

V produces a vector in V, and multiplying a vector in V by a

scalar also produces a vector in V. Axiom 1 is called closure

under addition, and Axiom 6 is called closure under scalar

multiplication.

Step 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Examples

1. V = R, the set of real numbers.

2. V = Rn, the set of n-tuples of real numbers.

3. Let V consist of a single object, which we denote by 0, and

define 0 + 0 = 0 and k0 = 0 for all scalars k. This vector

space is called as the zero vector space.

4. V = R∞, the vector space of infinite sequences of real

numbers.

Here V consist of objects of the form u = (u1 , u2 , . . . , un , . . .)

in which u1 , u2 , . . . , un , . . . is an infinite sequence of real

numbers. We define two infinite sequences to be equal if their
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corresponding components are equal, and we define addition

and scalar multiplication componentwise by

u+v = (u1 , u2 , . . . , un , . . .)+(v1 , v2 , . . . , vn , . . .) = (u1 +v1 , u2 +

v2 , . . . , un + vn , . . .) and

ku = (ku1 , ku2 , . . . , kun , . . .).

5. V = M22 , the set of 2 × 2 matrices with real entries,

and take the vector space operations on V to be the usual

operations of matrix addition and scalar multiplication.

In general, V = Mmn , the set of m × n matrices with real

entries, and take the vector space operations on V to be the

usual operations of matrix addition and scalar multiplication

is a vector space.

6. The Vector Space of Real-Valued Functions Let V be the

set of real-valued functions that are defined at each x in the

interval (−∞,∞).

If f = f(x) and g = g(x) are two functions in V and if k is

any scalar, then define the operations of addition and scalar

multiplication by

(f + g)(x) = f(x) + g(x) and (kf)(x) = kf(x)

7. V = C[a, b], the set of real-valued continuous functions that
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are defined at each x on the interval [a, b].

If f = f(x) and g = g(x) are two functions in V and if k is

any scalar, then define the operations of addition and scalar

multiplication by

(f + g)(x) = f(x) + g(x) and (kf)(x) = kf(x)

8. V = Pn , the set of all polynomials of degree less than or

equal to n and with real coefficients.

For any p(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 and

q(x) = bnx
n + bn−1x

n−1 + . . .+ b1x+ b0 in Pn and k ∈ R, define

p(x)+q(x) = (an +bn)xn+(an−1 +bn−1)x
n−1 + . . .+(a1 +b1)x+

(a0 + b0) and kp(x) = kanx
n + kan−1x

n−1 + . . .+ ka1x+ ka0 .

Then Pn is a vector space under these operations.

9. V = R+, the set of all real positive numbers. Define the

operations on R+ by

x + y = xy and kx = xk [Vector addition is numerical multiplication and

scalar multiplication is numerical exponentiation.]

Then R+ with the above operations is a vector space.

Examples of set which are not vector spaces.

10. Let V = R2 and define addition and scalar multiplication

operations as follows: If



90

u = (u1 , u2) and v = (v1 , v2), then define u+v = (u1+v1 , u2+v2)

and if k is any real number, then define ku = (ku1 , 0) For

example, if u = (2, 4), v = (−3, 5), and k = 7, then

u+ v = (2 + (−3), 4 + 5) = (−1, 9) and

ku = 7u = (7× 2, 0) = (14, 0).

Now, Axiom 10 fails to hold for certain vectors. For

example, if u = (u1 , u2) is such that u2 6= 0, then

1u = 1(u1 , u2) = (1 × u1 , 0) = (u1 , 0) 6= u Thus, V is

not a vector space.

11. The set of all polynomials of degree n with usual rule of

addition and scalar multiplication (as defined in example 8.)

since zero polynomial is not present in the set. Also it is not

closed with respect to addition.

12. V = R+, the set of all real positive numbers with usual

addition and scalar multiplication is not a vector space.

Properties

Theorem 2.1 Let V be a vector space, u a vector in V, and k

a scalar; then:

(a) 0u = 0

(b) k0 = 0
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(c) (-1)u = -u

(d) If ku = 0, then k = 0 or u = 0.

Proof. (a) We can write 0u + 0u = (0 + 0)u [ Axiom 8]

= 0u [Property of the number 0]

By Axiom 5 the vector 0u has a negative, -0u. Adding this

negative to both sides above we get

(0u + 0u) + (-0u) = 0u + (-0u)

0u+ (0u + (-0u)) = 0u + (-0u) [ Axiom 3]

0u + 0 =0 [ Axiom 5]

0u = 0 [ Axiom 4].

(b) By Axioms 7 and 4, k0+k0=k0+0=k0.

By Axiom 5 the vector k0 has a negative, -k0. Adding this

negative to both sides above we get

(k0+k0)+(-k0)=k0+(-k0)

k0+(k0+-k0)=k0+(-k0) [ Axiom 3]

k0+0 = 0 [ Axiom 5]

k0 = 0 [ Axiom 4].

(c) To prove that (-1)u = -u, we must show that

u + (-1)u = 0. The proof is as follows:

u + (-1)u = 1u + (-1)u [ Axiom 10]
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= (1 + (-1))u [ Axiom 8]

= 0u [Property of numbers]

= 0 [Part (a) of this theorem]

(d) Suppose that ku = 0 and k 6= 0. Then k has a multiplica-

tive inverse 1/k in R. Hence we get

u=1u [ Axiom 10]

=(1/k . k)u=(1/k)(ku) [ Axiom 9]

=(1/k)0=0 [ by part (b)]

Also if k=0, then by part (a), even if u 6= 0, ku = 0u=0.

Hence if ku = 0, then either k = 0 or u = 0.

2.2 Subspaces

A subset W of a vector space V is called a subspace of V

if W is itself a vector space under the addition and scalar

multiplication defined on V.

Theorem 2.2 If W is a set of one or more vectors in a vector

space V, then W is a subspace of V if and only if the following

conditions are satisfied.
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(a) If u and v are vectors in W, then u + v is in W.

(b) If k is a scalar and u is a vector in W, then ku is in W.

Proof. If W is a subspace of V, then all the vector space axioms

hold in W, including Axioms 1 and 6, which are precisely

conditions (a) and (b).

Conversely, assume that conditions (a) and (b) hold. Since

these are Axioms 1 and 6, and since Axioms 2,3,7,8,9, and 10

are inherited from V, we only need to show that Axioms 4 and

5 hold in W. For this purpose, let u be any vector in W. It

follows from condition (b) that ku is a vector in W for every

scalar k. In particular, 0u = 0 and (-1)u = -u are in W, which

shows that Axioms 4 and 5 hold in W.

Remark. The conditions (a) and (b) are equivalent to a single

condition ku+mv ∈ W, for all u, v ∈ W and for all scalars k

and m. Hence we can rewrite the above theorem as:

A non-empty subset W of a vector space V is a subspace of V

if and only if ku+mv ∈ W, for all u, v ∈ W and for all scalars

k and m.

Examples

1. If V is any vector space, and if W = 0 is the subset of V
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that consists of the zero vector only, then W is closed under

addition and scalar multiplication since 0+0=0 and k0=0 for

any scalar k. We call W the zero subspace of V.

Note that every vector space has at least two subspaces, itself and its zero subspace.

2. Consider the vector space R2, with component wise addition

and scalar multiplication. Then both W1 = {(x, 0) : x ∈ R}

and W2 = {(0, y) : y ∈ R} are subspaces of R2. Geometrically,

they are X and Y axes respectively. In general, if W is a

line through the origin, then adding two vectors on a line or

multiplying a vector on the line by a scalar produces another

vector on the line and so W is closed under addition and scalar

multiplication. Hence W is a subspace of R2.

Let S be the set of all points (x,y) in R2 for which x ≥ 0

and y ≥ 0. This set is not a subspace of R2 because it is not

closed under scalar multiplication. For example, v = (1, 1) is

a vector in W, but (-1)v = (-1, -1) is not.

3. Let V = Mnn . Then the set of symmetric n × n matrices

is closed under addition and scalar multiplication and hence

is a subspace of Mnn . Similarly, the sets of upper triangular
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matrices, lower triangular matrices, and diagonal matrices are

subspaces of Mnn .

The set W of invertible n × n matrices is not a subspace

of Mnn , as it is not closed under addition and not closed under

scalar multiplication. As an example in M22 , consider the

matrices

U =

1 2

2 5

 and V =

−1 2

−2 5

 The matrix 0U is the 2 × 2

zero matrix and hence is not invertible, and the matrix U + V

has a column of zeros so it also is not invertible.

Theorem 2.3 If W1 ,W2 , . . . ,Wr are subspaces of a vector

space V , then the intersection of these subspaces is also a

subspace of V .

Proof. Let W be the intersection of the subspaces

W1 ,W2 , . . . ,Wr . This set is not empty because each of

these subspaces contains the zero vector of V , and hence so

does their intersection. Thus, it remains to show that W is

closed under addition and scalar multiplication.

To prove closure under addition, let u and v be vectors in W .

Since W is the intersection of W1 ,W2 , . . . ,Wr , it follows that u
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and v also lie in each of these subspaces. Moreover, since these

subspaces are closed under addition and scalar multiplication,

they also all contain the vectors u+v and ku for every scalar

k, and hence so does their intersection W . This proves that W

is closed under addition and scalar multiplication.

Remark. In general if U and W are subspaces of a vector

space V , then U ∪W need not be a subspace.

For example, U = {(x, 0, 0) : x ∈ R} and W = {(0, y, 0) : y ∈

R} are subspaces of R3. But (x, 0, 0) + (0, y, 0) = (x, y, 0) /∈

U ∪W . Hence U ∪W is not a subspace.

Problems:

1. Define W as W = {(x1 , x2 , x3) ∈ R3 : a1x1 +a2x2 +a3x3 = 0}

for some fixed scalars a1 , a2 , a3 . Show that W is a subspace of

R3.

2. Let Pn be the space of all polynomials of degree less than or

equal to n. Then show that

S = {p(x) ∈ Pn : p(1) = 0 and p(3) = 0} is a subspace of Pn .
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2.3 Linear combinations

If w is a vector in a vector space V, then w is said to be a

linear combination of the vectors v1 , v2 , . . . , vr in V if w

can be expressed in the form w = k1v1 + k2v2 + · · · + krvr

where k1 , k2 , . . . , kr are scalars. These scalars are called the

coefficients of the linear combination.

Theorem 2.4 If S = {w1 , w2 , . . . , wr} is a nonempty set of

vectors in a vector space V, then:

(a) The set W of all possible linear combinations of the vectors

in S is a subspace of V.

(b) The set W in part(a) is the “smallest” subspace of V that

contains all of the vectors in S in the sense that any other

subspace that contains those vectors contains W.

Proof. (a) Let W be the set of all possible linear combinations

of the vectors in S. We must show that W is closed under addi-

tion and scalar multiplication. To prove closure under addition,

let u = c1w1 +c2w2 + · · ·+crwr and v = k1w1 +k2w2 + · · ·+krwr

be two vectors in W. It follows that their sum can be written

as u + v = (c1 + k1)w1 + (c2 + k2)w2 + · · · + (cr + kr)wr

which is a linear combination of the vectors in S. Thus,
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W is closed under addition. Similarly, for any scalar k,

ku = k(c1w1 + c2w2 + · · ·+ crwr) = kc1w1 +kc2w2 + · · ·+kcrwr

which is a linear combinations of the vectors in S. Thus W is

closed under scalar multiplication. Hence is a subspace of V.

(b) Let W be any subspace of V that contains all of the

vectors in S. Since W is closed under addition and scalar

multiplication, it contains all linear combinations of the vectors

in S and hence contains W.

If S = {w1 , w2 , . . . , wr} is a nonempty set of vectors in a

vector space V , then the subspace W of V that consists of

all possible linear combinations of the vectors in S is called

the subspace of V generated by S, and we say that the

vectors w1 , w2 , . . . , wr span W. We denote this subspace as

W = span{w1 , w2 , . . . , wr} or W = span(S).

Examples

1. We know that the standard unit vectors in Rn are

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1).

These vectors span Rn since every vector v = (v1 , v2 , . . . , vn)

in Rn can be expressed as v = v1e1 + v2e2 + · · · + vnen
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which is a linear combination of e1 = (1, 0, 0, . . . , 0), e2 =

(0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1). Thus, for example, the

vectors i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) span R3 since

every vector v = (a, b, c) in this space can be expressed as

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai+ bj + ck.

2. In R3, span{(1,0,0),(0,0,1)}={x(1,0,0)+z(0,0,1):x,z∈R} =

{(x,0,z):x,z∈R}. Hence the subspace of R3 spanned by the set

{(1,0,0),(0,0,1)} is the xz-plane.

3. The polynomials 1, x, x2, . . . , xn span the vector space

of all polynomials of degree less than or equal to n,

since each polynomial p(x) ∈ Pn which is of the form

p(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 can be writ-

ten as a linear combination of 1, x, x2, . . . , xn. Hence

Pn = span{1, x, x2, . . . , xn}.

Geometric view in R2 and R3.

If v is a nonzero vector in R2 or R3 that has its initial point at the origin,

then spanv, which is the set of all scalar multiples of v, is the line through

the origin determined by v.

If u and v are nonzero vectors in R3 that have their initial points at the

origin, then spanu,v, which consists of all linear combinations of u and v
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is the plane through the origin determined by these two vectors.

4. Consider the vectors u = (1, 2, -1) and v = (6, 4, 2) in R3.

Then w = (9, 2, 7) is a linear combination of u and v and that

r = (4, -1, 8) is not a linear combination of u and v.

In order for w to be a linear combination of u and v, there

must be scalars k1 and k2 such that w = k1u + k2v; that is,

(9, 2, 7) = k1(1, 2, -1) + k2(6, 4, 2) = (k1 + 6k2 , 2k1 + 4k2 ,

-k1 + 2k2)

Equating corresponding components gives k1 + 6k2 = 9, 2k1

+ 4k2 = 2, -k1 + 2k2 = 7. Solving this system using Gaussian

elimination yields k1 = -3, k2 = 2, so w = -3u + 2v.

Similarly, for r to be a linear combination of u and v, there

must be scalars k1 and k2 such that r = k1u + k2v; that is,

(4, -1, 8) = k1(1, 2, -1) + k2(6, 4, 2) = (k1 + 6k2 , 2k1 + 4k2 ,

-k1 + 2k2) Equating corresponding components gives k1 + 6k2

= 4, 2k1 + 4k2 = -1, -k1 + 2k2 = 8. This system of equations is

inconsistent, so no such scalars k1 and k2 exist. Consequently,

r is not a linear combination of u and v.

5. Determine whether the vectors v1 = (1, 1, 2), v2 = (1, 0, 1),

and v3 = (2, 1, 3) span the vector space R3.
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Solution. We want to determine whether an arbitrary vector b

= (b1 , b2 , b3) in R3 can be expressed as a linear combination

b = k1v1 + k2v2 + k3v3 of the vectors v1 , v2 , and v3 . Expressing

this equation in terms of components gives us

(b1 , b2 , b3) = k1(1, 1, 2) + k2(1, 0, 1) + k3(2, 1, 3)

i.e; (b1 , b2 , b3) = (k1 + k2 + 2k3 , k1 + k3 , 2k1 + k2 + 3k3)

i.e; k1 + k2 + 2k3 = b1 , k1 + k3 = b2 , 2k1 + k2 + 3k3 = b3

Thus, our problem reduces to ascertaining whether this system

is consistent for all values of b1 , b2 , and b3 . We know that

the system is consistent if and only if its coefficient matrix has

a nonzero determinant. Now, here the coefficient matrix is,

A =


1 1 2

1 0 1

2 1 3


But det(A) = 0, so v1 , v2 , and v3 do not span R3.

Problems:

1. Check whether (2,-5,3) in R3 can be written as a linear

combination of (1,-3,2), (2,-4,-1) and (1,-5,7).

2. Write (1,0) as a linear combination of (1,1) and (-1,2).
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2.4 Solution Spaces of Homogeneous

Systems

Theorem 2.5 The solution set of a homogeneous linear system

Ax = 0 of m equations in n unknowns is a subspace of Rn.

Proof. Let W be the solution set of the system. The set W is

not empty as it contains at least the trivial solution x = 0.

To show that W is a subspace of Rn, we must show that it is

closed under addition and scalar multiplication. To do this, let

x1 and x2 be vectors in W. Since these vectors are solutions of

Ax = 0, we have Ax1 = 0 and Ax2 = 0.

It follows from these equations and the distributive property

of matrix multiplication that A(x1 + x2) = Ax1 + Ax2 = 0

+ 0 = 0, so W is closed under addition. Similarly, if k is any

scalar then A(kx1) = kAx1 = k0 = 0, so W is also closed

under scalar multiplication.

Theorem 2.5 can be viewed as a statement about matrix

transformations by letting T
A

: Rn → Rm be multiplication by

the coefficient matrix A. From this point of the solution space

of Ax = 0 is the set of vectors in Rn that T
A

maps into the
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zero vector in Rm. This set is sometimes called the kernel of

the transformation.

Theorem 2.6 If A is an m × n matrix, then the kernel of the

matrix transformation T
A

: Rn → Rm is a subspace of Rn.

Remark. The solution set of every homogeneous system of m

equations in n unknowns is a subspace of Rn, it is never true that

the solution set of a nonhomogeneous system of m equations in n

unknowns is a subspace of Rn. There are two possible cases: first,

the system may not have any solutions at all, and second, if there

are solutions, then the solution set will not be closed either under

addition or under scalar multiplication.

Theorem 2.7 If S = {v1 , v2 , . . . , vr} and T = {w1 , w2 , . . . , wk
}

are nonempty sets of vectors in a vector space V, then

span{v1 , v2 , . . . , vr} = span{w1 , w2 , . . . , wk
} if and only if each

vector in S is a linear combination of those in T and each

vector in T is a linear combination of those in S.

Problems

In each part, solve the system by any method and then give a

geometric description of the solution set.
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(a)


1 −2 3

2 −4 6

3 −6 9



x

y

z

 =


0

0

0

.

(b)


1 −2 3

3 7 −8

−2 4 −6



x

y

z

 =


0

0

0

.

(c)


1 −2 3

3 7 −8

4 1 2



x

y

z

 =


0

0

0

.

(d)


0 0 0

0 0 0

0 0 0



x

y

z

 =


0

0

0

.

Solution. After solving we get

(a) The solutions are x = 2s - 3t, y = s, z = t from which

it follows that x = 2y - 3z or x - 2y + 3z = 0. This is the

equation of a plane through the origin that has n = (1, -2, 3)

as a normal.

(b) The solutions are x = -5t, y = -t, z = t which are

parametric equations for the line through the origin that is

parallel to the vector v = (-5, -1, 1).
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(c) The only solution is x = 0, y = 0, z = 0, so the solution

space consists of the single point 0.

(d) This linear system is satisfied by all real values of x, y, and

z, so the solution space is all of R3.

2.5 Linear Independence

If S = {v1 , v2 , . . . , vr} is a set of two or more vectors in a

vector space V , then S is said to be a linearly independent

set if no vector in S can be expressed as a linear combination

of the others. A set that is not linearly independent is said to

be linearly dependent.

Theorem 2.8 A nonempty set S = {v1 , v2 , . . . , vr} in a vector

space V is linearly independent if and only if the only coeffi-

cients satisfying the vector equation k1v1 +k2v2 + . . .+krvr = 0

are k1 = 0, k2 = 0, . . . , kr = 0.

Examples.

1. The most basic linearly independent set in Rn is the

set of standard unit vectors e1 = (1, 0, 0, . . . , 0), e2 =
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(0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1).

In R3, consider the standard unit vectors i = (1, 0, 0), j =

(0, 1, 0),k = (0, 0, 1). To prove linear independence we must

show that k1i + k2j + k3k = 0⇒ k1 = 0, k2 = 0, k3 = 0.

Now, k1i+k2j+k3k = 0⇒ k1(1, 0, 0)+k2(0, 1, 0)+k3(0, 0, 1) =

(0, 0, 0)⇒ (k1 , k2 , k3) = (0, 0, 0)⇒ k1 = 0, k2 = 0, k3 = 0.

2. Determine whether the vectors v1 = (1, -2, 3), v2 = (5,

6, -1), v3 = (3, 2, 1) are linearly independent or linearly

dependent in R3.

Consider the vector equation k1v1 + k2v2 + k3v3 = 0. That is,

k1(1, -2, 3) + k2(5, 6, -1) + k3(3, 2, 1) = (0, 0, 0).

Equating corresponding components on the two sides yields

the homogeneous linear system

k1 + 5k2 + 3k3 = 0

-2k1 + 6k2 + 2k3 = 0

3k1 - k2 + k3 = 0

Thus, our problem reduces to determining whether this system

has nontrivial solutions. One method is to solve the system,

which yields k1 = - 1/2 t, k2 = -1/2 t, k3 = t

This shows that the system has nontrivial solutions and hence
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that the vectors are linearly dependent.

A second method for establishing the linear dependence is to

consider the coefficient matrix and compute its determinant.

If it’s determinant is equal to zero, then the linear system

will have nontrivial solutions and the vectors v1 , v2 , and v3

will be linearly dependent.

Here, A =


1 5 3

−2 6 2

3 −1 1

 and det(A) = 0 and hence v1 , v2 ,

and v3 are linearly dependent.

3. Determine whether the vectors v1 = (1, 2, 2,−1), v2 =

(4, 9, 9,−4), v3 = (5, 8, 9,−5) in R4 are linearly dependent or

linearly independent.

The linear independence or linear dependence of these vectors

is determined by whether there exist nontrivial solutions of

the vector equation k1v1 + k2v2 + k3v3 = 0 or, equivalently, of

k1(1, 2, 2,−1) + k2(4, 9, 9,−4) + k3(5, 8, 9,−5) = (0, 0, 0, 0).

Equating corresponding components on the two sides, we get

the homogeneous linear system k1 + 4k2 + 5k3 = 0

2k1 + 9k2 + 8k3 = 0

2k1 + 9k2 + 9k3 = 0
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− k1 − 4k2 − 5k3 = 0

Solving we get, this system has only the trivial solution

k1 = 0, k2 = 0, k3 = 0 from which you can conclude that v1 , v2

and v3 are linearly independent.

4. Show that the polynomials 1, x, x2, . . . , xn form a linearly

independent set in Pn .

Let us denote the polynomials as p0 = 1, p1 = x, p2 =

x2, . . . , pn = xn.

We must show that the only coefficients satisfying the

vector equation a0p0 + a1p1 + a2p2 + . . . + anpn = 0 are

a0 = a1 = a2 = . . . = an = 0. But it is equivalent to the

statement that a0 + a1x + a2x
2 + . . . + anx

n = 0 for all x in

(−∞,∞), so we must show that this is true if and only if each

coefficient is zero.

We know that a nonzero polynomial of degree n has at most

n distinct roots. That being the case, each coefficient must

be zero, for otherwise the left side of the equation would

be a nonzero polynomial with infinitely many roots. Thus,

a0p0 +a1p1 +a2p2 + . . .+anpn = 0 has only the trivial solution.

5. Determine whether the polynomials p1 = 1 − x, p2 =
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5 + 3x− 2x2, p3 = 1 + 3x−x2 are linearly dependent or linearly

independent in P2 .

The linear independence or dependence of these vectors is de-

termined by whether the vector equation k1p1 +k2p2 +k3p3 = 0

can be satisfied with coefficients that are not all zero. To see

this is so, let us write the equation in its polynomial form as

k1(1−x)+k2(5+3x−2x2)+k3(1+3x−x2) = 0 or, equivalently,

as (k1 + 5k2 + k3) + (−k1 + 3k2 + 3k3)x + (−2k2 − k3)x
2 = 0

Since this equation must be satisfied by all x in (−∞,∞),

each coefficient must be zero (as explained in the previous

example). Thus, the linear dependence or independence of the

given polynomials determined by whether the following linear

system has a nontrivial solution: k1 + 5k2 + k3 = 0

− k1 + 3k2 + 3k3 = 0

− 2k2 − k3 = 0.

Since the coefficient matrix has determinant zero, this linear

system has nontrivial solutions. Thus, the set p1 , p2 , p3 is

linearly dependent.

Theorem 2.9 (a) A finite set that contains 0 is linearly

dependent.
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(b) A set with exactly one vector is linearly independent if and

only if that vector is not 0.

(c) A set with exactly two vectors is linearly independent if

and only if neither vector is a scalar multiple of the other.

Proof. (a) For any vectors v1 , v2 , . . . , vr , the set S =

{v1 , v2 , . . . , vr , 0} is linearly dependent since the equation

0v1 + 0v2 + . . . + 0vr + 1(0) = 0 expresses 0 as a linear

combination of the vectors in S with coefficients that are not

all zero.

(b) Let V be a vector space and v ∈ V . Let v 6= 0. Then

for any scalar α, αv = 0 ⇒ α = 0. Hence {v} is linearly

independent.

Conversely, let {v} be linearly independent. Then from (a), we

understand v 6= 0.

(c) Let V be a vector space and S = {v1 , v2} be a subset of V ,

with exactly two vectors. Suppose that one is a scalar multiple

of the other. Then there exists a non zero scalar α such that

v1 = αv2 . Then by axioms and properties of a vector space,

v1 = αv2 ⇒ v1 + (−αv2) = αv2 + (−αv2) ⇒ v1 + (−α)v2 = 0.

Hence the set S = {v1 , v2} is linearly dependent.
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Now let the set S = {v1 , v2} be linearly dependent. Then

there exists scalars α1 , α2 not both of them are zero, such that

α1v1 + α2v2 = 0. If α1 6= 0, then v1 = −(α2α1/)v2 and if

α2 6= 0, then v2 = −(α1α2/)v1 . Thus if S = {v1 , v2} is linearly

dependent, then one of them is a scalar multiple of the other.

Example 6. The functions f1 = x and f2 = sinx are linearly

independent vectors in F (−∞,∞) since neither function is

a scalar multiple of the other. On the other hand, the two

functions g1 = sin2x and g2 = sinxcosx are linearly dependent

because the trigonometric identity sin2x = 2sinxcosx reveals

that g1 and g2 are scalar multiples of each other.

Exanmple 7. the functions f1 = sin2x, f2 = cos2x, and f3 = 5

form a linearly dependent set in F (−∞,∞), since the equation

5f1 + 5f2−f3 = 5sin2x+ 5cos2x−5 = 5(sin2x+ cos2x)−5 = 0

expresses 0 as a linear combination of f1 , f2 , and f3 with

coefficients that are not all zero.

Linear independence has the following useful geometric inter-

pretations in R2 and R3:

� Two vectors in R2 or R3 are linearly independent if and only if
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they do not lie on the same line when they have their initial points

at the origin. Otherwise one would be a scalar multiple of the

other.

� Three vectors in R3 are linearly independent if and only if they

do not lie in the same plane when they have their initial points at

the origin. Otherwise at least one would be a linear combination of

the other two.

Theorem 2.10 Let S = {v1 , v2 , . . . , vr} be a set of vectors in

Rn. If r > n, then S is linearly dependent.

Proof. Suppose that

v1 = (v11 , v12 , . . . , v1n)

v2 = (v21 , v22 , . . . , v2n)

...

vr = (vr1 , vr2 , . . . , vrn)

and consider the equation k1v1 + k2v2 + · · · + krvr = 0. If we

express both sides of this equation in terms of components

and then equate the corresponding components, we obtain the

system

v11k1 + v21k2 + . . .+ vr1kr = 0

v12k1 + v22k2 + . . .+ vr2kr = 0
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...

v1nk1 + v2nk2 + . . .+ vrnkr = 0

This is a homogeneous system of n equations in the r un-

knowns k1 , . . . , kr . Since r > n, it follows that the system

has nontrivial solutions. Therefore, S = {v1 , v2 , . . . , vr} is a

linearly dependent set.

Problems

1. Determine whether the set {(3,−2, 5), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

is linearly independent in R3.

2. Determine whether the set {(6, 2, 3, 4), (0, 5,−3, 1), (0, 0, 7,−2)}

is linearly independent in R4.

3. Determine whether the set {(2, 6,−4), (3, 9,−6)} is linearly

independent in R3.

4. Determine whether the set {1 + x, x + x2, x2 + 1}, a subset

of P2 is linearly independent or not.
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2.6 Wronskian

If f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are functions that are

n - 1 times differentiable on the interval (−∞,∞), then the

determinant

W (x) =

f1(x) f2(x) . . . fn(x)

f
′

1
(x) f

′

2
(x) . . . f

′

n
(x)

...
...

...

fn−1
1

(x) fn−1
2

(x) . . . fn−1
n

(x)

is called the Wronskian of f1 , f2 , . . . , fn .

Theorem 2.11 If the functions f1 , f2 , . . . , fn have n-1 continu-

ous derivatives on the interval (−∞,∞), and if the Wronskian

of these functions is not identically zero on (−∞,∞), then

these functions form a linearly independent set of vectors in

C(n−1)(−∞,∞).

Proof. Suppose that f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are

linearly dependent vectors in C(n−1)(−∞,∞) and also suppose

that the Wronskian of these functions is not identically zero

on (−∞,∞). This implies that the vector equation

k1f1 + k2f2 + · · ·+ knfn = 0

is satisfied by values of the coefficients k1 , . . . , kn that are not
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all zero, and for these coefficients the equation

k1f1(x) + k2f2(x) + · · ·+ knfn(x) = 0

is satisfied for all x in (−∞,∞). Using this equation together

with those that result by differentiating it n - 1 times we obtain

the linear system

k1f1(x) +k2f2(x) + . . . +knfn(x) = 0

k1f
′

1
(x) +k2f

′

2
(x) + . . . +knf

′

n
(x) = 0

...
...

...
...

k1f
n−1
1

(x) +k2f
n−1
2

(x) + . . . +knf
n−1
n

(x) = 0

This can be written as

f1(x) f2(x) . . . fn(x)

f
′

1
(x) f

′

2
(x) . . . f

′

n
(x)

...
...

...

fn−1
1

(x) fn−1
2

(x) . . . fn−1
n

(x)





k1

k2

...

kn


=



0

0

...

0


Then the determinant of the coefficient matrix is the Wron-

skian, W , of f1 , f2 , . . . , fn . Since W is not identically zero

on (−∞,∞), the coefficient matrix is invertible and the

above linear system has only the trivial solution., that is

k1 = 0, k2 = 0, . . . , kn = 0. Thus the functions f1 , f2 , . . . , fn

form a linearly independent set of vectors in C(n−1)(−∞,∞).

Examples.
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1. The functions f1 = x and f2 = sinx are linearly independent

vectors in C∞(−∞,∞).

The Wronskian is W (x) =
x sinx

1 cosx
= xcosx − sinx This

function is not identically zero on the interval (−∞,∞) since,

for example, W (π/2) = π/2 cos(π/2)− sin(π/2) = π/2. Thus,

the functions are linearly independent.

2. The functions f1 = 1, f2 = ex , and f3 = e2x are linearly

independent vectors in C∞(−∞,∞).

The Wronskian is W (x) =

1 ex e2x

0 ex 2e2x

0 ex 4e2x

= 2e3x This function

is obviously not identically zero on (−∞,∞), so f1 , f2 , and f3

form a linearly independent set.

2.7 Coordinates and Basis

A vector space V is said to be finite-dimensional if there

is a finite set of vectors in V that spans V and is said to be

infinite-dimensional if no such set exists.
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Examples of finite dimensional vector spaces are Rn, Pn ,Mmn .

Examples of infinite dimensional vector spaces areR∞, P∞ , F (−∞,∞), C(−∞,∞).

If S = {v1 , v2 , . . . , vn} is a set of vectors in a finite-dimensional

vector space V , then S is called a basis for V if:

(a) S spans V.

(b) S is linearly independent.

Examples

1. Consider the standard unit vectors S = e1 = (1, 0, 0, . . . , 0), e2 =

(0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1) of Rn. We have proved

that spanS = Rn and also S is linearly independent. Thus,

S is a basis for Rn that we call the standard basis for Rn.

In particular, i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) is the

standard basis for R3.

2. S = 1, x, x2, . . . , xn is a basis for the vector space Pn of

polynomials of degree n or less.

For that we must show that the polynomials in S are linearly

independent and span Pn . Let us denote these polynomials by

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn We have showed that these

vectors span Pn and that they are linearly independent. Thus,

they form a basis for Pn that we call the standard basis for
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Pn .

3. The vectors v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4)

form a basis for R3.

To show this, we must show that these vectors are linearly

independent and span R3. To prove linear independence we

must show that the vector equation

c1v1 + c2v2 + c3v3 = 0

has only the trivial solution and to prove that the vectors span

R3 we must show that every vector b = (b1 , b2 , b3) in R3 can be

expressed as

c1v1 + c2v2 + c3v3 = b.

By equating corresponding components on the two sides, these

two equations can be expressed as the linear systems

c1 + 2c2 + 3c3 = 0 c1 + 2c2 + 3c3 = b1

2c1 + 9c2 + 3c3 = 0 and 2c1 + 9c2 + 3c3 = b2

c1 + 4c3 = 0 c1 + 4c3 = b3

Thus we want to show that the homogeneous system has only

the trivial solution and that the nonhomogeneous system is

consistent for all values of b1 , b2 , and b3 . But the two systems

have the same coefficient matrix
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A =


1 2 3

2 9 3

1 0 4


and det(A) = −1 6= 0. Hence the proof and thus the vectors

v1 , v2 , and v3 form a basis for R3.

4. The matrices M1 =

1 0

0 0

 ,M2 =

0 1

0 0

 ,M3 =

0 0

1 0

 ,M4 =

0 0

0 1

 form a basis for the vector space M22 of

2 × 2 matrices.

For this we want to show that the matrices are linearly

independent and span M22 . To prove linear independence we

must show that the equation

c1M1 + c2M2 + c3M3 + c4M4 = 0

has only the trivial solution, where 0 is the 2 × 2 zero matrix;

and to prove that the matrices span M22 we must show that

every 2 × 2 matrix

a b

c d

 can be expressed as

c1M1 + c2M2 + c3M3 + c4M4 = B

The matrix forms of the above two equations are
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c1

1 0

0 0

+ c2

0 1

0 0

+ c3

0 0

1 0

+ c4

0 0

0 1

 =

0 0

0 0


and c1

1 0

0 0

+ c2

0 1

0 0

+ c3

0 0

1 0

+ c4

0 0

0 1

 =

a b

c d


which can be rewritten as

c1 c2

c3 c4

 =

0 0

0 0

 and

c1 c2

c3 c4

 =

a b

c d

.

Since the first equation has only the trivial solution

c1 = c2 = c3 = c4 = 0 the matrices are linearly inde-

pendent, and since the second equation has the solution

c1 = a, c2 = b, c3 = c, c4 = d the matrices span M22 . This

proves that the matrices M1 ,M2 ,M3 ,M4 form a basis for M22 .

More generally, the mn different matrices whose entries are

zero except for a single entry of 1 form a basis for Mmn called

the standard basis for Mmn .

The simplest of all vector spaces is the zero vector space

V = {0}. This space is finite-dimensional because it is spanned

by the vector 0. However, it has no basis because {0} is not a

linearly independent set. However, we will define the empty set



121

Ø to be a basis for this vector space.

5. The vector space of P∞ of all polynomials with real

coefficients is infinite dimensional. (We will show this by P∞

has no finite spanning set.)

If there were a finite spanning set, say S = {p1 , p2 , . . . , pr}, then

the degrees of the polynomials in S would have a maximum

value, say n; and this in turn would imply that any linear

combination of the polynomials in S would have degree at most

n. Thus, there would be no way to express the polynomial xn+1

as a linear combination of the polynomials in S, contradicting

the fact that the vectors in S span P∞ .

Theorem 2.12 Uniqueness of Basis Representation

If S = {v1 , v2 , . . . , vn} is a basis for a vector space V,

then every vector v in V can be expressed in the form

v = c1v1 + c2v2 + . . .+ cnvn in exactly one way.

Proof. Since S spans V, every vector in V is expressible as

a linear combination of the vectors in S. To see that there is

only one way to express a vector as a linear combination of

the vectors in S, suppose that some vector v can be written as

v = c1v1+c2v2+. . .+cnvn and also as v = k1v1+k2v2+. . .+knvn .
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Subtracting the second equation from the first gives

0 = (c1 − k1)v1 + (c2 − k2)v2 + . . .+ (cn − kn)vn .

Since the right side of this equation is a linear combina-

tion of vectors in S, the linear independence of S implies

that c1 − k1 = 0, c2 − k2 = 0, . . . , cn − kn = 0 that is,

c1 = k1 , c2 = k2 , . . . , cn = kn .

Thus, the two expressions for v are the same.

If S = {v1 , v2 , . . . , vn} is a basis for a vector space V, and

v = c1v1 + c2v2 + . . . + cnvn is the expression for a vector

v in terms of the basis S, then the scalars c1 , c2 , . . . , cn are

called the coordinates of v relative to the basis S. The

vector (c1 , c2 , . . . , cn) in Rn constructed from these coordinates

is called the coordinate vector of v relative to S; it is

denoted by (v)
S

= (c1 , c2 , . . . , cn).

Remark. It is standard to regard two sets to be the same if they have

the same members, even if those members are written in a different

order. In particular, in a basis for a vector space V , which is a set

of linearly independent vectors that span V , the order in which those

vectors are listed does not generally matter. However, the order in which
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they are listed is critical fo r coordinate vectors, since changing the order

of the basis vectors changes the coordinate vectors. To deal with this

complication, many authors define an ordered basis to be one in which

the listing order of the basis vectors remains fixed. In all discussions

involving coordinate vectors we will assume that the underlying basis is

ordered, even though we may not say so explicitly. Observe that (v)
S

is a

vector in Rn, so that once an ordered basis S is given for a vector space

V, Theorem 2.12 establishes a one-to-one correspondence between vectors

in V and vectors in Rn

Examples

1. In the special case where V = Rn and S is the standard

basis, the coordinate vector (v)
S

and the vector v are the

same; that is,v = (v)
S
. For example, in R3 the representation

of a vector v = (a, b, c) as a linear combination of the vectors

in the standard basis S = {i, j, k} is v = ai + bj + ck so the

coordinate vector relative to this basis is (v)
S

= (a, b, c), which

is the same as the vector v.

2. Find the coordinate vector for the polynomial p(x) =

c0 + c1x + c2x
2 + . . . + cnx

n relative to the standard basis for

the vector space Pn .
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Here p(x) is expressed in the polynomial form as a linear

combination of the standard basis vectors S = 1, x, x2, . . . , xn.

Thus, the coordinate vector for p relative to S is (p)S =

(c0 , c1 , c2 , . . . , cn).

3. Find the coordinate vector of B =

a b

c d

 relative to the

standard basis for M22 .

We have showed that the representation of a vector B =

a b

c d


as a linear combination of the standard basis vectors isa b

c d

 = a

1 0

0 0

 + b

0 1

0 0

 + c

0 0

1 0

 + d

0 0

0 1

 so the

coordinate vector of B relative to S is (B)
S

= (a, b, c, d).

4. The vectors v1 = (1, 2, 1), v2 = (2, 9, 0), v3 = (3, 3, 4) form

a basis for R3 . Find the coordinate vector of v = (5,−1, 9)

relative to the basis S = {v1 , v2 , v3}. Also find the vector v in

R3 whose coordinate vector relative to S is (v)
S

= (−1, 3, 2).

To find (v)
S

we must first express v as a linear combination of

the vectors in S; that is, we must find values of c1 , c2 , and c3

such that v = c1v1 + c2v2 + c3v3 or, in terms of components,

(5,−1, 9) = c1(1, 2, 1) + c2(2, 9, 0) + c3(3, 3, 4) Equating corre-
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sponding components gives

c1 + 2c2 + 3c3 = 5

2c1 + 9c2 + 3c3 = −1

c1 + 4c3 = 9

Solving this system we obtain c1 = 1, c2 = −1, c3 = 2.

Therefore, (v)
S

= (1,−1, 2).

Using the definition of (v)
S
, we obtain v = (−1)v1 +3v2 +2v3 =

(−1)(1, 2, 1) + 3(2, 9, 0) + 2(3, 3, 4) = (11, 31, 7).

5. Find the coordinate vector of v = (5,−1, 9) relative to

the basis B = {(1, 0, 1), (1, 1, 0), (0, 1, 1)} of R3 . Also find

the vector u in R3 whose coordinate vector relative to B is

(u)
B

= (−1, 3, 2).

Answer. (v)
B

= (2, 1, 3) and u = (2, 5, 1).

2.8 Dimension

Theorem 2.13 Let V be an n-dimensional vector space, and

let {v1 , v2 , . . . , vn} be any basis.

(a) If a set in V has more than n vectors, then it is linearly
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dependent.

(b) If a set in V has fewer than n vectors, then it does not span

V.

Proof. (a) Let S ′ = {w1 , w2 , . . . , wm} be any set of m vectors in

V, where m>n. We want to show that S ′ is linearly dependent.

Since S = {v1 , v2 , . . . , vn} is a basis, each w
i

can be expressed

as a linear combination of the vectors in S, say

w1 = a11v1 + a21v2 + . . .+ an1vn

w2 = a12v1 + a22v2 + . . .+ an2vn
...

wm = a1mv1 + a2mv2 + . . .+ anmvn (1)

To show that S ′ is linearly dependent, we must find scalars

k1 , k2 , . . . , km , not all zero, such that

k1w1 + k2w2 + · · ·+ kmwm = 0 (2).

Then the equations in (1) can be rewritten in the partitioned

form

[
w1 w2 . . . wm

]
=

[
v1 v2 . . . vm

]


a11 a21 . . . am1

a12 a22 . . . am2

...
...

...

a1n a2n . . . amn


(3)

Since m>n, the linear system
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a11 a21 . . . am1

a12 a22 . . . am2

...
...

...

a1n a2n . . . amn





x1

x2

...

xm


=



0

0

...

0


(4)

has more equations than unknowns and hence has a nontrivial

solution x1 = k1 , x2 = k2 , ..., xm = km . Creating a column

vector from this solution and multiplying both sides of (3) on

the right by this vector yields

[
w1 w2 . . . wm

]


k1

k2

...

km



=

[
v1 v2 . . . vm

]


a11 a21 . . . am1

a12 a22 . . . am2

...
...

...

a1n a2n . . . amn





k1

k2

...

km


.

By (4), this simplifies to

[
w1 w2 . . . wm

]


k1

k2

...

km


=



0

0

...

0


which we can rewrite as k1w1 + k2w2 + · · · + kmwm = 0. Since
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the scalar coefficients in this equation are not all zero, we have

proved that S ′ = w1 , w2 , ..., wm is linearly independent.

(b) Similar to (a).

Theorem 2.14 All bases for a finite-dimensional vector space

have the same number of vectors.

Proof. By Theorem 2.13, if S = v1 , v2 , . . . , vn is an arbitrary

basis for V, then the linear independence of S implies that

any set in V with more than n vectors is linearly dependent

and any set in V with fewer than n vectors does not span V.

Thus, unless a set in V has exactly n vectors it cannot be a basis.

The dimension of a finite-dimensional vector space V is

denoted by dim(V ) and is defined to be the number of vectors

in a basis for V. In addition, the zero vector space is defined to

have dimension zero.

Examples

1. Dimensions of some familiar vector spaces

dim(Rn) = n [The standard basis has n vectors.]

dim(Pn) = n + 1 [The standard basis has n + 1 vectors.]

dim(Mmn) = mn [The standard basis has mn vectors.]
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2. If S = {v1 , v2 , . . . , vr} then every vector in span(S)is

expressible as a linear combination of the vectors in S. Thus,

if the vectors in S are linearly independent, they automatically

form a basis for span(S), from which we can conclude that

dim(span(S)) = dim[span{v1 , v2 , . . . , vr}] = r.

In words, the dimension of the space spanned by a linearly

independent set of vectors is equal to the number of vectors in

that set.

3. Find a basis for and the dimension of the solution space of

the homogeneous system x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

After solving, the solution of this system will be x1 =

−3r−4s−2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0 which can

be written in vector form as (x1 , x2 , x3 , x4 , x5 , x6) = (−3r−4s−

2t, r,−2s, s, t, 0) or, alternatively, as (x1 , x2 , x3 , x4 , x5 , x6) =

r(−3, 1, 0, 0, 0, 0) + s(−4, 0,−2, 1, 0, 0) + t(−2, 0, 0, 0, 1, 0).

This shows that the vectors v1 = (−3, 1, 0, 0, 0, 0), v2 =

(−4, 0,−2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0) span the solution
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space. These vectors are linearly independent by showing that

none of them is a linear combination of the other two. Thus,

the solution space has dimension 3.

Theorem 2.15 Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V

that is outside of span(S), then the set S ∪ {v} that results by

inserting v into S is still linearly independent.

(b) If v is a vector in S that is expressible as a linear combina-

tion of other vectors in S, and if S - v denotes the set obtained

by removing v from S, then S and S - v span the same space;

that is, span(S) = span(S - v)

Proof. (a) Assume that S = {v1 , v2 , . . . , vr} is a linearly

independent set of vectors in V, and v is a vector in V that

is outside of span(S). To show that S = v1 , v2 , . . . , vr , v is a

linearly independent set, we must show that the only scalars

that satisfy k1v1 + k2v2 + . . .+ krvr + kr+1v = 0 (1)

are k1 = k2 = . . . = kr = kr+1 = 0. But it must be true

that kr+1 = 0 for otherwise we could solve (1) for v as a

linear combination of v1 , v2 , . . . , vr , contradicting the assump-
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tion that v is outside of span(S). Thus, (1) simplifies to

k1v1 + k2v2 + . . .+ krvr = 0 (2)

which, by the linear independence of v1 , v2 , . . . , vr , implies that

k1 = k2 = . . . = kr = 0

(b) Assume that S = {v1 , v2 , . . . , vr} is a set of vectors in V,

and suppose that vr is a linear combination of v1 , v2 , . . . , vr−1 ,

say vr = c1v1 + c2v2 + . . .+ cr−1vr−1 (3).

We want to show that if vr is removed from S, then

the remaining set of vectors v1 , v2 , . . . , vr−1 still spans S;

that is, we must show that every vector w in span(S)

is expressible as a linear combination of v1 , v2 , . . . , vr−1 .

But if w is in span(S), then w is expressible in the form

w = k1v1 + k2v2 + . . .+ kr−1vr−1 + krvr or, on substituting (3),

w = k1v1 +k2v2 + . . .+kr−1vr−1 +kr(c1v1 + c2v2 + . . .+ cr−1vr−1)

which expresses w as a linear combination of v1 , v2 , . . . , vr−1 .

Example.Show that p1 = 1− x2, p2 = 2− x2, and p3 = x3 are

linearly independent vectors.

The set S = p1 , p2 is linearly independent since neither vector

in S is a scalar multiple of the other. Since the vector p3

cannot be expressed as a linear combination of the vectors in
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S, it can be adjoined to S to produce a linearly independent

set S ∪ p3 = p1 , p2 , p3 .

Theorem 2.16 Let V be an n-dimensional vector space, and

let S be a set in V with exactly n vectors. Then S is a basis for

V if and only if S spans V or S is linearly independent.

Proof. Assume that S has exactly n vectors and spans V.

To prove that S is a basis, we must show that S is a linearly

independent set. But if this is not so, then some vector v in S

is a linear combination of the remaining vectors. If we remove

this vector from S, then it follows from Theorem 2.15(b) that

the remaining set of n - 1 vectors still spans V. But this is

impossible since Theorem 2.13(b) states that no set with fewer

than n vectors can span an n-dimensional vector space. Thus

S is linearly independent.

Assume that S has exactly n vectors and is a linearly indepen-

dent set. To prove that S is a basis, we must show that S spans

V. But if this is not so, then there is some vector v in V that

is not in span(S). If we insert this vector into S, then it follows

from Theorem 2.15(a) that this set of n + 1 vectors is still

linearly independent. But this is impossible, since Theorem
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2.13(a) states that no set with more than n vectors in an

n-dimensional vector space can be linearly independent. Thus

S spans V.

1. Explain why the vectors v1 = (−3, 7) and v2 = (5, 5)

form a basis for R2.

Since neither vector is a scalar multiple of the other, the two

vectors form a linearly independent set in the two-dimensional

space R2, and hence they form a basis by Theorem 2.16.

2. Explain why the vectors v1 = (2, 0,−1), v2 = (4, 0, 7), and

v3 = (−1, 1, 4) form a basis for R3.

The vectors v1 and v2 form a linearly independent set in

the xz-plane. The vector v3 is outside of the xz-plane, so

the set v1 , v2 , v3 is also linearly independent. Since R3 is

three-dimensional, Theorem 2.16 implies that v1 , v2 , v3 is a

basis for the vector space R3.

Theorem 2.17 Let S be a finite set of vectors in a finite-

dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced

to a basis for V by removing appropriate vectors from S.
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(b) If S is a linearly independent set that is not already a basis

for V, then S can be enlarged to a basis for V by inserting

appropriate vectors into S.

Proof. (a) If S is a set of vectors that spans V but is not a basis

for V, then S is a linearly dependent set. Thus some vector v

in S is expressible as a linear combination of the other vectors

in S. By the Plus/Minus Theorem 2.15(b), we can remove v

from S, and the resulting set S will still span V. If S is linearly

independent, then S is a basis for V, and we are done. If S

is linearly dependent, then we can remove some appropriate

vector from S to produce a set S that still spans V. We can

continue removing vectors in this way until we finally arrive at

a set of vectors in S that is linearly independent and spans V.

This subset of S is a basis for V.

(b) Suppose that dim(V) = n. If S is a linearly independent

set that is not already a basis for V, then S fails to span V,

so there is some vector v in V that is not in span(S). By the

Plus/Minus Theorem 2.15 (a), we can insert v into S, and the

resulting set S will still be linearly independent. If S spans

V, then S is a basis for V, and we are finished. If S does
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not span V, then we can insert an appropriate vector into S

to produce a set S that is still linearly independent. We can

continue inserting vectors in this way until we reach a set with

n linearly independent vectors in V. This set will be a basis for

V by Theorem 2.16.

Theorem 2.18 If W is a subspace of a finite-dimensional

vector space V, then:

(a) W is finite-dimensional.

(b) dim(W) ≤ dim(V).

(c) W = V if and only if dim(W) = dim(V).

Proof. (a) Let V be a finite dimensional vector space and W

be a subspace of it. Suppose dim(V)=n and S be a basis for V.

Then the number of elements in S = n. Since W is a subspace

of V, W has at most n vectors. Hence if B be a basis of W, B

has at most n vectors. So W is finite-dimensional.

(b) Part (a) shows that W is finite-dimensional, so it has a

basis S = {w1 , w2 ,..., wm}. Either S is also a basis for V or it

is not. If so, then dim(V) = m, which means that dim(V) =

dim(W). If not, then because S is a linearly independent set it

can be enlarged to a basis for V by part (b) of Theorem 2.17.
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But this implies that dim(W) < dim(V),so we have shown that

dim(W) ≤ dim(V) in all cases.

(c) Assume that dim(W) = dim(V) and that S = {w1 , w2 ,...,

wm} is a basis for W. If S is not also a basis for V, then being

linearly independent S can be extended to a basis for V by

part (b) of Theorem 2.17. But this would mean that dim(V) >

dim(W), which contradicts our hypothesis. Thus S must also

be a basis for V, which means that W = V . The converse is

obvious.

Problems

1. Find a basis for the solution space of the following homoge-

neous linear system and find the dimension of that space:

x− 2y + z − w = 0

x+ y − 2z + 3w = 0

4x+ y − 5z + 8w = 0

5x− 7y + 2z − w = 0.

The augmented matrix (same as the coefficient matrix) for the

above system is
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1 −2 1 −1

1 1 −2 3

4 1 −5 8

5 −7 2 −1


.

After reducing to row echelon form we get

1 0 −1 5/3

0 1 −1 4/3

0 0 0 0

0 0 0 0





x

y

z

w


=



0

0

0

0


.

The general solution is obtained as

x = r − 5/3s, y = r − 4/3s, z = r, w = s.

This can be written in the vector form as

(x, y, z, w) = (r − 5/3s, r − 4/3s, r, s)

= r(1, 1, 1, 0) + s(−5/3,−4/3, 0, 1)

= r(1, 1, 1, 0)− 1
3
s(5, 4, 0,−3).

This shows that the vectors

v1 = (1, 1, 1, 0) and v2 = (5, 4, 0,−3) span the solution space.

also for any scalars k1 and k2

k1v1 + k2v2 = 0 ⇒ k1(1, 1, 1, 0) + k2(5, 4, 0,−3) = (0, 0, 0, 0) ⇒

k1 + 5k2 = 0, k1 + 4k2 = 0, k1 = 0,−3k2 = 0 ⇒ k1 = k2 = 0.

Hence the vectors v1 and v2 are linearly independent and so
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{v1 , v2} form the basis for the solution space. Thus the solution

space is of dimension 2.

2. Find the basis of the subspace W = {(a, b, c, d) : c =

a− b d = a+ b} of R4 and its dimension.

Any vector (a, b, c, d) in W can be written as (a, b, c, d) =

(a, b, a− b, a+ b) = a(1, 0, 1, 1) + b(0, 1,−1, 1).

W = span{(1, 0, 1, 1), (0, 1,−1, 1)}.

For any scalars k1 and k2 ,

k1(1, 0, 1, 1) +k2(0, 1,−1, 1) = (0, 0, 0, 0)⇒ (k1 , k2 , k1 −k2 , k1 +

k2) = (0, 0, 0, 0)⇒ k1 = 0, k2 = 0.

Hence {(1, 0, 1, 1), (0, 1,−1, 1)} is linearly independent and so is

a basis for W . Since the basis has two elements, dim(W ) = 2.

3. Let S = {2, x, x − x2, x + x2} be a subset of P2 . Find the

dimension of span(S).

Any element p(x) of span(S) can be written as

p(x) = a2 + bx+ c(x− x2) + d(x+ x2) for some a, b, c, d ∈ R.

Then p(x) = a2 + bx+ c(x− x2) + d(x+ x2)

= (2a)1 + (b+ c+ d)x+ (d− c)x2.

Hence span(S) = {1, x, x2}.

Also for any scalars l,m, n, l1 + mx + nx2 = 0 ⇒ l = m =
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n = 0. Hence {1, x, x2} is linearly independent.

Since {1, x, x2} is linearly independent and {1, x, x2} =

span(S), {1, x, x2} is a basis of span(S). So dim(span(S)) = 3.
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MODULE

THREE

GENERAL VECTOR SPACES

CONTINUED

3.1 Change of Basis

If S = v1 , v2 , . . . , vn is a basis for a finite-dimensional vector

space V, and if

(v)
S

= (c1 , c2 , . . . , cn)

is the coordinate vector of v relative to S, then, the mapping

v → (v)
S

creates a one-to-one correspondence between vectors in the

141
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general vector space V and vectors in the Euclidean vector

space Rn. We call this map the coordinate map relative to

S from V to Rn. We will express coordinate vectors in the

matrix form

[v]
S

=



c1

c2
...

cn


where the square brackets emphasize the matrix

notation.

The Change-of-Basis Problem If v is a vector in a

finite-dimensional vector space V, and if we change the basis

for V from a basis B to a basis B’, how are the coordinate

vectors [v]
B

and [v]
B’

related?

To solve this problem, it will be convenient to refer to B as the

“old basis” and B’ as the “new basis.” Thus, our objective is

to find a relationship between the old and new coordinates of

a fixed vector v in V.

For convenience we solve this problem for two-dimensional

spaces. The solution for n-dimensional spaces is similar. Let

B = {u1 , u2} and B’ = {v1 , v2} be the old and new bases,
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respectively. Suppose the coordinate vectors for the new basis

vectors relative to the old basis are

[v1 ]B =

a
b

 and [v2 ]B =

c
d


. That is v1 = au1 + bu2 and v2 = cu1 + du2 .

Now let v be any vector in V, and let [v]
B’

=

k1

k2

 be the new

coordinate vector, so that v = k1v1 + k2v2 . In order to find

the old coordinates of v, we must express v in terms of the

old basis B. Substituting, v = k1(au1 + bu2) + k2(cu1 + du2)

or v = (k1a + k2c)u1 + (k1b + k2d)u2 Thus, the old coordinate

vector for v is [v]
B

=

k1a+ k2c

k1b+ k2d

 which can be written as

[v]
B

=

a c

b d


k1

k2

 =

a c

b d

 [v]
B’

.

This equation states that the old coordinate vector [v]
B

results

when we multiply the new coordinate vector [v]
B’

on the left

by the matrix P =

a c

b d

 .
Since the columns of this matrix are the coordinates of the new

basis vectors relative to the old basis, we have the following
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solution of the change-of-basis problem.

Solution of the Change-of-Basis Problem If we

change the basis for a vector space V from an old basis

B = u1 , u2 , . . . , un to a new basis B’ = v1 , v2 , . . . , vn, then for

each vector v in V, the old coordinate vector [v]
B

is related to

the new coordinate vector [v]
B’

by the equation

[v]
B

= P [v]
B’

(1)

where the columns of P are the coordinate vectors of the new

basis vectors relative to the old basis; that is, the column vectors

of P are [v1 ]B , [v2 ]B , . . . , [vn ]
B

. (2)

The matrix P in Equation (1) is called the transition

matrix from B’ to B. For emphasis, we will often denote it

by P
B’→B

It follows from (2) that this matrix can be expressed

in terms of its column vectors as

P
B’→B

=

[
[v1 ]B [v2 ]B . . . [vn ]

B

]
. (3)

Similarly, the transition matrix from B to B’ can be expressed

in terms of its column vectors as

P
B→B’

=

[
[u1 ]B’

[u2 ]B’
. . . [un ]

B’

]
. (4)

Remark. There is a simple way to remember both of these
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formulas using the terms “old basis” and “new basis” : In

Formula (3) the old basis is B’ and the new basis is B, whereas

in Formula (4) the old basis is B and the new basis is B’.

Thus, both formulas can be restated as follows:

The columns of the transition matrix from an old basis

to a new basis are the coordinate vectors of the old

basis relative to the new basis.

Examples

1. Consider the bases B = {u1 , u2} and B’ = {v1 , v2} for R2,

where u1 = (1, 0), u2 = (0, 1), v1 = (1, 1), v2 = (2, 1).

(a) Find the transition matrix P
B’→B

from B’ to B.

(b) Find the transition matrix P
B→B’

from B to B’.

(a) Here the old basis vectors are v1 and v2 and the new basis

vectors are u1 and u2 . We want to find the coordinate matrices

of the old basis vectors v1 and v2 relative to the new basis

vectors u1 and u2 . To do this, observe that

v1 = u1 + u2

v2 = 2u1 + u2

from which it follows that
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[v1 ]B =

1

1

 and [v2 ]B =

2

1


and hence that P

B’→B
=

1 2

1 1

.

(b) Here the old basis vectors are u1 and u2 and the new basis

vectors are v1 and v2 we want to find the coordinate matrices

of the old basis vectors v1 and v2 relative to the new basis

vectors u1 and u2 . To do this, observe that

u1 = −v1 + v2

u2 = 2v1 − v2

from which it follows that

[u1 ]B’
=

−1

1

 and [u2 ]B’
=

 2

−1


and hence that P

B→B’
=

−1 2

1 −1

.

Suppose now that B and B’ are bases for a finite-

dimensional vector space V. Since multiplication by P
B’→B

maps coordinate vectors relative to the basis B’ into coordinate

vectors relative to a basis B, and P
B→B’

maps coordinate

vectors relative to B into coordinate vectors relative to B’, it
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follows that for every vector v in V we have

[v]
B

= P
B’→B

[v]
B’

(5) and [v]
B’

= P
B→B’

[v]
B

= P
B’

(6)

2. Let B and B’ be the bases in Example 1. Use an appropriate

formula to find [v]
B

given that [v]
B’

=

−3

5

.

To find [v]
B

we need to make the transition from B’ to B. It

follows from Formula (5) and part (a) of Example 1 that

[v]
B

= P
B’→B

[v]
B’

=

1 2

1 1


−3

5

 =

7

2

.

If B and B’ are bases for a finite-dimensional vector space

V, then P
B’→B

P
B→B’

= P
B→B because multiplication by the

product P
B’→B

P
B→B’

first maps the B-coordinates of a vector

into its B’-coordinates, and then maps those B’-coordinates

back into the original B-coordinates. Since the net effect of the

two operations is to leave each coordinate vector unchanged,

we are led to conclude that P
B→B must be the identity matrix,

that is, P
B’→B

P
B→B’

= I. (7)

For example, for the transition matrices obtained in Example

1 we have P
B’→B

P
B→B’

=

1 2

1 1


−1 2

1 −1

 =

1 0

0 1


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It follows from (7) that P
B’→B

is invertible and that its inverse

is P
B→B’

.

Theorem 3.1 If P is the transition matrix from a basis B’ to

a basis B for a finite dimensional vector space V , then P is

invertible and P−1 is the transition matrix from B to B’.

An Efficient Method for Computing Transition Matrices for

Rn

Procedure for Computing P
B→B’

(8)

Step 1. Form the matrix [B’|B].

Step 2. Use elementary row operations to reduce the matrix in

Step 1 to reduced row echelon form.

Step 3. The resulting matrix will be [I|P
B→B’

].

Step 4. Extract the matrix P
B→B’

from the right side of the

matrix in Step 3.

Examples

3. In example 1, consider the bases B = {u1 , u2} and

B’ = {v1 , v2} for R2, where u1 = (1, 0), u2 = (0, 1), v1 =

(1, 1), v2 = (2, 1).

(a) Use formula (8) to find transition matrix from B’ to B.

(b) Use formula (8) to find transition matrix from B to B’.
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(a) Here B’ is the old basis and B is the new basis, so

[new basis|old basis] =

 1 0 1 2

0 1 1 1

 Since the left side is

already the identity matrix, no reduction is needed. We see

that the transition matrix is

P
B’→B

=

1 2

1 1

. which agrees with the result in Example 1.

(b) Here B is the old basis and B’ is the new basis, so

[new basis|old basis] =

 1 2 1 0

1 1 0 1

 By reducing this

matrix, so the left side becomes the identity, we obtain

[I|transition from old to new] =

 1 0 −1 2

0 1 1 −1

 so the

transition matrix is P
B→B’

=

−1 2

1 −1

.

which also agrees with the result in Example 1.

Theorem 3.2 Let B’ = {u1 , u2 , . . . , un} be any basis for the

vector space Rn and let S = e1 , e2 , . . . , en be the standard basis

for Rn. If the vectors in these bases are written in column

form, then P
B’→S

=

[
u1 u2 . . . un

]
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If A =

[
u1 u2 . . . un

]
is any invertible n × n ma-

trix, then A can be viewed as the transition matrix from the

basis {u1 , u2 , . . . , un} for Rn to the standard basis for Rn.

Thus, for example, the matrix

A =


1 2 3

2 5 3

1 0 8


which was shown to be invertible earlier, is the transition

matrix from the basis u1 = (1, 2, 1), u2 = (2, 5, 0), u3 = (3, 3, 8)

to the basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

3.2 Row Space, Column Space, and

Null Space

For an m×n matrix

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn


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the vectors r1 =

[
a11 a12 . . . a1n

]
r2 =

[
a21 a22 . . . a2n

]
...

...

rm =

[
am1 am2 . . . amn

]
in Rn that are formed from the rows of A are called the row

vectors of A, and the vectors

c1 =



a11

a21

...

am1


, c2 =



a12

a22

...

am2


, . . . , cn =



a1n

a2n

...

amn


in Rm formed from the columns of A are called the column

vectors of A.

If A is an m×n matrix, then the subspace of Rn spanned

by the row vectors of A is called the row space of A, and

the subspace of Rm spanned by the column vectors of A is

called the column space of A. The solution space of the

homogeneous system of equations Ax = 0, which is a subspace

of Rn, is called the null space of A.

We will sometimes denote the row space of A, the column space of A, and
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the null space of A by row(A), col(A), and null(A), respectively.

Theorem 3.3 A system of linear equations Ax = b is consis-

tent if and only if b is in the column space of A.

Proof. Consider the linear system Ax=b where A =

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn


and x =



x1

x2

...

xn


.

If c1 , c2 ,. . ., cn denote the column vectors of A, then the

product Ax can be expressed as a linear combination of these

vectors with coefficients from x;

that is, Ax = x1c1 + x2c2 +. . .+ xncn . (1)

Thus, a linear system, Ax = b, of m equations in n unknowns

can be written as x1c1 + x2c2 +. . .+ xncn = b (2)

from which we conclude that Ax = b is consistent if and only if

b is expressible as a linear combination of the column vectors

of A.

Example 4. Let Ax = b be the linear system
−1 3 2

1 2 −3

2 1 −2



x1

x2

x3

 =


1

−9

−3


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Show that b is in the column space of A by expressing it as a

linear combination of the column vectors of A.

Solving the system by Gaussian elimination yields x1 = 2, x2

= -1, x3 = 3. It follows from this and Formula (2) that

2


−1

1

2

−


3

2

1

+ 3


2

−3

−2

 =


1

−9

−3

.

The general solution of a consistent linear system Ax = b can be obtained

by adding any specific solution of the system to the general solution of

the corresponding homogeneous system Ax = 0. Keeping in mind that

the null space of A is the same as the solution space of Ax = 0, we can

rephrase that theorem in the following vector form.

Theorem 3.4 If x0 is any solution of a consistent linear system

Ax = b, and if S = v1 , v2 ,..., v
k

is a basis for the null space of

A, then every solution of Ax = b can be expressed in the form

x = x0 + c1v1 + c2v2 +···+ c
k
v
k
. (3)

Conversely, for all choices of scalars c1 , c2 ,...,ck , the vector x in

this formula is a solution of Ax = b.

The vector x0 in Formula (3) is called a particular solution

of Ax = b, and the remaining part of the formula is called the

general solution of Ax = 0.
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The general solution of a consistent linear system can be expressed

as the sum of a particular solution of that system and the general

solution of the corresponding homogeneous system.

Example 5. For the matrix A and the column vector b,

determine whether b is in the column space of A and if so,

express b as a linear combination of the column vectors of A:

A =


1 1 1

1 −1 1

2 1 −1

 ; b =


6

2

1

.

Consider the linear system Ax=b where

A =


1 1 1

1 −1 1

2 1 −1

 ;x =


x

y

z

 ; b =


6

2

1

.

The augmented matrix for the above system is


1 1 1 6

1 −1 1 2

2 1 −1 1

.

After reducing to echelon form, we get


1 0 0 1

0 1 0 2

0 0 1 3

.
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In matrix form,


1 0 0

0 1 0

0 0 1



x

y

z

 =


1

2

3

 which is equivalent to

x = 1, y = 2, z = 3.

Hence the linear system Ax=b is consistent. So the vector b

is in the column space of A and can be expressed as a linear

combination of column vectors of A as
6

2

1

 = 1


1

1

2

+ 2


1

−1

1

+ 3


1

1

−1

 .
Example 6. Suppose that x1 = 3, x2 = 0, x3 = −1, x4 = 5 is

a solution of a nonhomogeneous linear system Ax=b and that

the solution set of the homogeneous system Ax = 0 is given by

x1 = 5r − 2s, x2 = s, x3 = s+ t, x4 = t .

(a) Find a column vector form of the general solution of

Ax = 0.

(b) Find a column vector form of the general solution of Ax=b.

Solution. (a) Column vector form of the general solution of

the homogeneous system Ax = 0 is given by
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x1

x2

x3

x4


=



5r − 2s

s

s+ t

t


= r



5

0

0

0


+ s



−2

1

1

0


+ t



0

0

1

1


.

(b) Column vector form of the general solution of the nonho-

mogeneous system Ax=b is given by

x1

x2

x3

x4


=



3

0

−1

5


+



5r − 2s

s

s+ t

t


=



3

0

−1

5


+r



5

0

0

0


+s



−2

1

1

0


+t



0

0

1

1


.

Theorem 3.5 Elementary row operations do not change

the null space of a matrix.

Theorem 3.6 Elementary row operations do not change the

row space of a matrix.

Theorems 3.5 and 3.6 might tempt you into incorrectly believing that

elementary row operations do not change the column space of a matrix.

To see why this is not true, compare the matrices

A =

1 3

2 6

 and B =

1 3

0 0

.

The matrix B can be obtained from A by adding -2 times the first row to

the second. However, this operation has changed the column space of A,
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since that column space consists of all scalar multiples of

1

2

 whereas

the column space of B consists of all scalar multiples of

1

0

 and the two

are different spaces.

Theorem 3.7 If a matrix R is in row echelon form, then the

row vectors with the leading 1’s (the nonzero row vectors) form

a basis for the row space of R, and the column vectors with

the leading 1’s of the row vectors form a basis for the column

space of R.

Theorem 3.8 If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if

and only if the corresponding column vectors of B are linearly

independent.

(b) A given set of column vectors of A forms a basis for the

column space of A if and only if the corresponding column

vectors of B form a basis for the column space of B.

Example 7. Find a bases for the null space, row space and

column space of the matrix:
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A =



1 4 5 6 9

3 −2 1 4 −1

−1 0 −1 −2 −1

2 3 5 7 8


.

Solution. The null space of A is the solution space of

the homogeneous linear system Ax = 0. First reduce the

matrix to row reduced echelon form and which in turn yields

1 0 1 2 1

0 1 1 1 2

0 0 0 0 0

0 0 0 0 0


Since the elememtary row operations do not change the

solution space of the system Ax = 0, it is equal to the solution

space of the system of equations

1 0 1 2 1

0 1 1 1 2

0 0 0 0 0

0 0 0 0 0





x1

x2

x3

x4

x5


=



0

0

0

0


,

which is equivalent to the system of equations

x1 + x3 + 2x4 + x5 = 0, x2 + x3 + x4 + 2x5 = 0. Assinging
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x3 = r, x4 = s x5 = t and solving we get the general solution

as x1 = −r − 2s− t, x2 = −r − s− 2t, x3 = r, x4 = s x5 = t.

Thus the column vector form of the general solution of Ax = 0

is



x1

x2

x3

x4

x5


=



−r − 2s− t

−r − s− 2t

r

s

t


= r



−1

−1

1

0

0


+ s



−2

−1

0

1

0


+ t



−1

−2

0

0

1


.

Hence the null space of A is spanned by the vectors

v1 =



−1

−1

1

0

0


, v2 =



−2

−1

0

1

0


, v3



−1

−2

0

0

1


.

Also, for any scalars k1 , k2 , k3 , k1v1 + k2v2 + k3v3 = 0 ⇒

k1



−1

−1

1

0

0


+k2



−2

−1

0

1

0


+k3



−1

−2

0

0

1


=



0

0

0

0

0


⇒ k1 = 0, k2 = 0, k3 = 0.

Thus span{v1 , v2 , v3} = null(A) and v1 , v2 , v3 are linearly inde-

pendent. Hence {v1 , v2 , v3} is a basis for the null space of A.
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Since the elememtary row operations do not change the

row space of a matrix, row space of the given matrix A is same

as the row space of the matrix below:

1 0 1 2 1

0 1 1 1 2

0 0 0 0 0

0 0 0 0 0


which we have obtained from A by elementary

row operations. Hence the row space of A is spanned by the

non zero vectors

r1 =

[
1 0 1 2 1

]
and r2 =

[
0 1 1 1 2

]
of the above matrix. Also, for any scalars k1 , k2 , k1r1 + k2r2 =

0⇒ k1

[
1 0 1 2 1

]
+ k2

[
0 1 1 1 2

]
=



0

0

0

0

0


⇒ k1 = 0, k2 = 0.

Thus span{r1 , r2} = row(A) and r1 , r2 are linearly independent.

Hence {r1 , r2} is a basis for the row space of A.
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Now, to find column space, remember that A and R can

have different column spaces. So we cannot directly find the

column space of A from the column vectors of R. However, it

follows from Theorem 3.8(b) that if we can find a set of column

vectors of R that forms a basis for the column space of R, then

the corresponding column vectors of A will form a basis for the

column space of A. Since the first and second columns of R

contain the leading 1’s of the row vectors, these vectors

c
′

1
=



1

0

0

0


and c

′

2
=



0

1

0

0


foem a basis for the column space of R. Thus, the correspond-

ing column vectors of A, that is first and second columns of A,

which are

c1 =



1

3

−1

2


and c2 =



4

−2

0

3


form a basis for the column space of A.



162

In Example 7, we found a basis for the row space of a ma-

trix by reducing that matrix to row echelon form. However, the

basis vectors produced by that method were not all row vectors of

the original matrix. To find a basis for the row space of a matrix A

that consists entirely of row vectors of A, we proceed as follows:

First take the transpose of A, AT , there by converting the row

space of A into column space of AT . appluing the method

described in the Example 7.. find the basis of the basis of

the column space of AT , consisting entirely of column vectors

of AT .Transposing these vectors back to row vectors, we get

a basis for the row space of A that consists entirely of row

vectors from A.

Example 8. Find a basis for the row space of

A =



1 −2 0 0 3

2 −5 −3 −2 6

0 5 15 10 0

2 6 18 8 6


consisting entirely of row vectors from A.

Transposing A, we get
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AT =



1 2 0 2

−2 −5 5 6

0 −3 15 18

0 −2 10 8

3 6 0 6


and when reducing this matrix to row echelon form we obtain

1 2 0 2

0 1 −5 −10

0 0 0 1

0 0 0 0

0 0 0 0


.

The first, second, and fourth columns contain the leading 1’s,

so the corresponding column vectors in AT form a basis for the

column space of AT ; these are

c1 =



1

−2

0

0

3


, c2 =



2

−5

−3

−2

6


, c4 =



2

6

18

8

6


.

Transposing again and adjusting the notation appropriately

yields the basis vectors
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r1 =

[
1 −2 0 0 3

]
, r2 =

[
2 −5 −3 −2 6

]
,

r4 =

[
2 6 18 8 6

]
.

for the row space of A.

3.2.1 Basis for the Space Spanned by a Set

of Vectors

Consider the following general problem in Rn.

Given a set of vectors S = {v1 , v2 , . . . , vk} in Rn, find a subset

of these vectors that forms a basis for span(S), and express

each vector that is not in that basis as a linear combination of

the basis vectors.

The following is a summary of the steps that we follow to solve

the problem posed above.

Step 1. Form the matrix A whose columns are the vectors in

the set S = {v1 , v2 , . . . , vk}.

Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by w1 , w2 , . . . , wk
.

Step 4. Identify the columns of R that contain the leading
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1’s. The corresponding column vectors of A form a basis for

span(S).

This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column

vectors w1 , w2 , . . . , wk
of R by successively expressing each w

i

that does not contain a leading 1 of R as a linear combination

of predecessors that do.

Step 6. In each dependency equation obtained in Step 5,

replace the vector w
i

by the vector v
i

for i = 1, 2, . . . , k.

This completes the second part of the problem.

Example 9.(a) Find a subset of the vectors v1 =

(1,−2, 0, 3), v2 = (2,−5,−3, 6), v3 = (0, 1, 3, 0), v4 =

(2,−1, 4,−7), v5 = (5,−8, 1, 2) that forms a basis for the

subspace of R4 spanned by these vectors.

(b) Express each vector not in the basis as a linear combination

of the basis vectors.

Solution (a) We begin by constructing a matrix that has

v1 , v2 , v3 , v4 , v5 as its column vectors:
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1 2 0 2 5

−2 −5 1 −1 −8

0 −3 3 4 1

3 6 0 −7 2


. (1)

The first part of our problem can be solved by finding a

basis for the column space of this matrix. Reducing the

matrix to reduced row echelon form and denoting the column

vectors of the resulting matrix by w1 , w2 , w3 , w4 , and w5 yields

1 0 2 0 1

0 1 −1 0 1

0 0 0 1 1

0 0 0 0 0


. (2)

The leading 1’s occur in columns 1, 2, and 4, so by Theorem

3.7, {w1 , w2 , w4} is a basis for the column space of (2), and

consequently, {v1 , v2 , v4} is a basis for the column space of (1).

(b) We will start by expressing w3 and w5 as linear combi-

nations of the basis vectors w1 , w2 , w4 . The simplest way of

doing this is to express w3 and w5 in terms of basis vectors

with smaller subscripts. Accordingly, we will express w3 as a

linear combination of w1 and w2 , and we will express w5 as

a linear combination of w1 , w2 , and w4 . By inspection of (2),
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these linear combinations are

w3 = 2w1 − w2

w5 = w1 + w2 + w4 .

We call these the dependency equations. The corresponding

relationships in (1) are

v3 = 2v1 − v2

v5 = v1 + v2 + v4 .

3.3 Rank, Nullity, and the Funda-

mental Matrix Spaces

Theorem 3.9 The row space and the column space of a

matrix A have the same dimension.

Proof. It follows from Theorems 3.6 and 3.8 (b) that elemen-

tary row operations do not change the dimension of the row

space or of the column space of a matrix. Thus, if R is any

row echelon form of A, it must be true that

dim(row space of A) = dim(row space of R)

dim(column space of A) = dim(column space of R)
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so it suffices to show that the row and column spaces of R

have the same dimension. But the dimension of the row space

of R is the number of nonzero rows, and by Theorem 3.7 the

dimension of the column space of R is the number of leading

1’s. Since these two numbers are the same, the row and column

space have the same dimension.

The rank of A can be interpreted as the number of leading 1’s

in any row echelon form of A.

The common dimension of the row space and column space of

a matrix A is called the rank of A and is denoted by rank(A);

the dimension of the null space of A is called the nullity of A

and is denoted by nullity(A).

Example 10. Find the rank and nullity of the matrix

A =



−1 2 0 4 5 −3

3 −7 2 0 1 4

2 −5 2 4 6 1

4 −9 2 −4 −4 7


Solution. The reduced row echelon form of A is
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1 0 −4 −28 −37 13

0 1 −2 −12 −16 5

0 0 0 0 0 0

0 0 0 0 0 0


(1)

Since this matrix has two leading 1’s, its row and col-

umn spaces are two dimensional and rank(A) = 2.

To find the nullity of A, we must find the dimension of the

solution space of the linear system Ax = 0. This system can

be solved by reducing its augmented matrix to reduced row

echelon form. The resulting matrix will be identical to (1),

except that it will have an additional last column of zeros, and

hence the corresponding system of equations will be

x1 − 4x3 − 28x4 − 37x5 + 13x6 = 0

x2 − 2x3 − 12x4 − 16x5 + 5x6 = 0

Solving these equations for the leading variables yields

x1 = 4x3 + 28x4 + 37x5 − 13x6

x2 = 2x3 + 12x4 + 16x5 − 5x6 (2)

from which we obtain the general solution

x1 = 4r + 28s+ 37t− 13u

x2 = 2r + 12s+ 16t− 5u
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x3 = r

x4 = s

x5 = t

x6 = u

or in column vector form

x1

x2

x3

x4

x5

x6


= r



4

2

1

0

0

0


+ s



28

12

0

1

0

0


+ t



37

16

0

0

1

0


+ u



−13

−5

0

0

0

1


(3)

Because the four vectors on the right side of (3) form a basis

for the solution space, nullity(A) = 4.

Example 11. What is the maximum possible rank of an m ×

n matrix A that is not square?

Solution. Since the row vectors of A lie in Rn and the column

vectors in Rm, the row space of A is at most n-dimensional and

the column space is at most m-dimensional. Since the rank of

A is the common dimension of its row and column space, it

follows that the rank is at most the smaller of m and n. We

denote this by writing rank(A) ≤ min(m,n) in which min(m,n)
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is the minimum of m and n.

Theorem 3.11 - Dimension Theorem for Matrices

If A is a matrix with n columns, then rank(A) + nullity(A) =

n.

Proof. Since A has n columns, the homogeneous linear system

Ax = 0 has n unknowns (variables). These fall into two distinct

categories: the leading variables and the free variables. Thus,

number of leading variables + number of free variables = n.

But the number of leading variables is the same as the number

of leading 1’s in any row echelon form of A, which is the same

as the dimension of the row space of A, which is the same as

the rank of A. Also, the number of free variables in the general

solution of Ax = 0 is the same as the number of parameters

in that solution, which is the same as the dimension of the

solution space of Ax = 0, which is the same as the nullity of

A. Hence rank(A) + nullity(A) = n.

In Example 10., the matrix A has 6 columns. Also we have

showed that rank(A) = 2 and nullity(A) = 4. Thus rank(A) +

nullity(A) = 6.

Theorem 3.12 If A is an m × n matrix, then
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(a) rank(A) = the number of leading variables in the general

solution of Ax=0.

(b) nullity(A) = the number of parameters in the general

solution of Ax=0.

Example 12. (a) Find the number of parameters in the

general solution of Ax=0 if A is a 5 × 7 matrix of rank 3.

(b) Find the rank of a 5 × 7 matrix A for which Ax=0 has a

two-dimensional solution space.

Solution. (a) From Dimension Theorem for Matrices,

nullity(A) = n - rank(A) = 7 - 3 = 4.

Thus, there are four parameters.

(b) The matrix A has nullity 2, so

rank(A) = n - nullity(A) = 7 - 2 = 5.

Theorem 3.13 If Ax=b is a consistent linear system of m

equations in n unknowns, and if A has rank r, then the general

solution of the system contains n - r parameters.

Proof. Suppose Ax=b is a consistent linear system of m

equations in n unknowns. Then its coefficient matrix A is

an m × n matrix. We know if Ax=b is a consistent linear

system, then its general solution can be expressed as the
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sum of a particular solution of that system and the general

solution of the corresponding homogeneous system (Theorem

3.4). Since the particular solution contains no parameters, the

number of parameters in the general solution of the system

Ax=b is same as the number of parameters in the general

solution of the system Ax=0. But the number of parameters

in the general solution of Ax=0 is equal to the nullity(A)

(Theorem 3.12). Hence if A has rank r, then by Dimension

Theorem for Matrices, we get (the number of parameters in the

general solution of Ax=b)+r=nullity(A)+rank(A)=number

of columns of A=n. Hence the number of parameters in the

general solution of system of equations Ax=b is n-r.

There are six important vector spaces associated with a

matrix A and its transpose AT :

row space of A row space of AT

column space of A column space of AT

null space of A null space of AT

However, transposing a matrix converts row vectors into

column vectors and conversely, so except for a difference in

notation, the row space of AT is the same as the column space
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of A, and the column space of AT is the same as the row space

of A. Thus, of the six spaces listed above, only the following

four are distinct:

row space of A column space of A

null space of A null space of AT

These are called the fundamental spaces of a matrix A.

If A is an m × n matrix, then the row space and null space of A are

subspaces of Rn, and the column space of A and the null space of AT are

subspaces of Rm.

Theorem 3.14 If A is any matrix, then rank(A) = rank(AT ).

Proof. Since transposing a matrix converts row vectors into

column vectors and conversely, except for a difference in

notation, the row space of AT is the same as the column space

of A, and the column space of AT is the same as the row space

of A. Thus, we have

rank(A) = dim(row space of A) = dim(column space of AT ) =

rank(AT ).

The above result has some important implications. For

example, if A is an m × n matrix, then applying Dimension

Theorem for Matrices to the matrix AT and using the fact that
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this matrix has m columns (AT is of order n × m) yields

rank(AT ) + nullity(AT ) = m

which, by Theorem 3.14, can be rewritten as

rank(A) + nullity(AT ) = m

The above equation makes it possible to express the dimensions

of all four fundamental spaces in terms of the size and rank of

A. Specifically, if rank(A) = r, then

dim[row(A)] = r dim[col(A)] = r

dim[null(A)] = n - r dim[null(AT )] = m - r.

3.3.1 A Geometric Link Between the Funda-

mental Spaces

If u = (u1 , u2 , . . . , un) and v = (v1 , v2 , . . . , vn) are vectors in

Rn, then the dot product (also called the Euclidean inner

product) of u and v is denoted by u . v and is defined by

u.v = u1v1 + u2v2 + . . .+ unvn

Two nonzero vectors u and v in Rn are said to be orthogonal

(or perpendicular) if u.v = 0. Also the zero vector in Rn is

orthogonal to every vector in Rn.
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Recall that a linear equation in the variables x1 , x2 , . . . , xn has

the form

a1x1 + a2x2 + . . .+ anxn = b(a1 , a2 , . . . , an not all zero)

and that the corresponding homogeneous equation is

a1x1 + a2x2 + . . .+ anxn = 0(a1 , a2 , . . . , an not all zero)

These equations can be rewritten in vector form by letting

a = (a1 , a2 , . . . , an) and x = (x1 , x2 , . . . , xn)

and can be written as a.x = b and a.x = 0

This equation reveals that each solution vector x of a homo-

geneous equation is orthogonal to the coefficient vector a. To

take this geometric observation a step further, consider the

homogeneous system a11x1 + a12x2 + . . .+ a1nxn = 0

a21x1 + a22x2 + . . .+ a2nxn = 0

...

am1x1 + am2x2 + . . .+ amnxn = 0

If we denote the successive row vectors of the coefficient

matrix by r1 , r2 , . . . , rm , then we can rewrite this system in dot

product form as

r1.x = 0

r2.x = 0
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...

rm.x = 0

from which we see that every solution vector x is orthogonal

to every row vector of the coefficient matrix. In summary, we

have the following result.

If A is an m × n matrix, then the solution set of the homoge-

neous linear system Ax = 0 consists of all vectors in Rn that

are orthogonal to every row vector of A.

From the above statement it follows that if A is an m × n

matrix, then the null space of A consists of those vectors that

are orthogonal to each of the row vectors of A. To develop that

idea in more detail, we make the following definition.

If W is a subspace of Rn, then the set of all vectors in Rn that

are orthogonal to every vector in W is called the orthogonal

complement of W and is denoted by the symbol W⊥.

Theorem 3.15 If W is a subspace of Rn, then:

(a) W⊥ is a subspace of Rn.

(b) The only vector common to W and W⊥ is 0.

(c) The orthogonal complement of W⊥ is W.

Theorem 3.16 If A is an m × n matrix, then:
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(a) The null space of A and the row space of A are orthogonal

complements in Rn.

(b) The null space of AT and the column space of A are

orthogonal complements in Rm.

Theorem 3.17 - Equivalent statements

If A is an n × n matrix, then the following statements are

equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In .

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) 6= 0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

(j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.
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(n) A has rank n.

(o) A has nullity 0.

(p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is 0.

The linear systems that have more constraints than

unknowns, called overdetermined systems, or with fewer

constraints than unknowns, called underdetermined sys-

tems.

Theorem 3.18 Let A be an m × n matrix.

(a) (Overdetermined Case). If m > n, then the linear system

Ax = b is inconsistent for at least one vector b in Rn.

(b) (Underdetermined Case). If m < n, then for each vector b

in Rm the linear system Ax = b is either inconsistent or has

infinitely many solutions.

Proof. (a) Assume that m>n, in which case the column vectors

of A cannot span Rm (fewer vectors than the dimension of

Rm). Thus, there is at least one vector b in Rm that is not in

the column space of A, and for any such b the system Ax = b

is inconsistent by Theorem 3.3.

(b) Assume that m<n. For each vector b in Rn there are two
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possibilities: either the system Ax = b is consistent or it is

inconsistent. If it is inconsistent, then the proof is complete.

If it is consistent, then Theorem 3.13 implies that the general

solution has n - r parameters, where r = rank(A). Since A is

an m × n matrix, r=rank(A) ≤ min(m,n) and so

n - r ≥ n - m > 0. This means that the general solution has

at least one parameter and hence there are infinitely many

solutions.

Example 12.

(a) What can you say about the solutions of an overdetermined

system Ax = b of 7 equations in 5 unknowns in which A has

rank r = 4?

(b) What can you say about the solutions of an underdeter-

mined system Ax = b of 5 equations in 7 unknowns in which

A has rank r = 4?

Solution. (a) The system is consistent for some vector b in R7,

and for any such b the number of parameters in the general

solution is n - r = 5 - 4 = 1.

(b) The system may be consistent or inconsistent, but if it is

consistent for the vector b in R5, then the general solution has
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n - r = 7 - 4 = 3 parameters.

Example 13. What conditions must be satisfied by

b1 , b2 , b3 , b4 , b5 for the following linear system to be consistent?

x1 − 2x2 = b1

x1 − x2 = b2

x1 + x2 = b3

x1 + 2x2 = b4

x1 + 3x2 = b5

Solution. In matrix notation, the given system is Ax=b, where

A =



1 −2

1 −1

1 1

1 2

1 3


, x =

x1

x2

 , b =



b1

b2

b3

b4

b5


.

Since the number of equations is greater than the number of

unknowns, the given system is over determined. Hence the

given system cannot be consistent for all values of b. The
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augmented matrix of the given system is



1 −2 b1

1 −1 b2

1 1 b3

1 2 b4

1 3 b5


.

Its row equivalent form is



1 0 2b2 − b1

0 1 b2 − b1

0 0 b3 − 3b2 + 2b1

0 0 b4 − 4b2 + 3b1

0 0 b5 − 5b2 + 4b1


.

Thus, the system is consistent if and only if b1 , b2 , b3 , b4 , b5

satisfy the conditions

2b1 − 3b2 + b3 = 0

3b1 − 4b2 + b4 = 0

4b1 − 5b2 + b5 = 0

This is a homogeneous system of linear equations in 5 un-

knowns. Its coefficient matrix is
2 −3 1 0 0

3 −4 0 1 0

4 −5 0 0 1


which is equivalent to
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1 0 0 −5 4

0 1 0 −4 3

0 0 1 −2 1

.

Thus,


1 0 0 −5 4

0 1 0 −4 3

0 0 1 −2 1





b1

b2

b3

b4

b5


=


0

0

0

,

which is equivalent to the system of equations

b1 = 5r − 4s, b2 = 4r − 3s, b3 = 2r − s, b4 = r, b5 = s

where r and s are arbitrary.

3.4 Basic Matrix Transformations in

R2 and R3

There are many ways to transform the vector spaces R2 and

R3, some of the most important of which can be accomplished

by matrix transformations. For example, rotations about the

origin, reflections about lines and planes through the origin,
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and projections onto lines and planes through the origin can

all be accomplished using a linear operator T
A

in which A is

an appropriate 2 × 2 or 3 × 3 matrix.

Some of the most basic matrix operators on R2 and R3

are those that map each point into its symmetric image about

a fixed line or a fixed plane that contains the origin; these

are called reflection operators. Table 1 shows the standard

matrices for the reflections about the coordinate axes in R2,

and Table 2 shows the standard matrices for the reflections

about the coordinate planes in R3.

Figure 3.1: Table 1
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Figure 3.2: Table 2
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Matrix operators on R2 and R3 that map each point into

its orthogonal projection onto a fixed line or plane through the

origin are called projection operators (or more precisely, or-

thogonal projection operators). Table 3 shows the standard

matrices for the orthogonal projections onto the coordinate axes

in R2, and Table 4 shows the standard matrices for the orthog-

onal projections onto the coordinate planes in R3.
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Figure 3.3: Table 3

Figure 3.4: Table 4
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Matrix operators on R2 and R3 that move points along arcs

of circles centered at the origin are called rotation operators.

Let us consider how to find the standard matrix for the rota-

tion operator T : R2 → R2 that moves points counterclockwise

about the origin through a positive angle θ. As illustrated in

Figure 3.5, the images of the standard basis vectors are

T (e1) = T (1, 0) = (cosθ, sinθ) and

T (e2) = T (0, 1) = (−sinθ, cosθ)

so it follows that the standard matrix for T is

A = [T (e1)|T (e2)] =

cosθ −sinθ
sinθ cosθ


In keeping with common usage we will denote this operator by

R
θ

and callcosθ −sinθ
sinθ cosθ

 (1)

the rotation matrix for R2. If x = (x, y) is a vector in R2,

and if w = (w1 , w2) is its image under the rotation, then the

relationship w = R
θ
x can be written in component form as

w1 = xcosθ − ysinθ w2 = xsinθ + ycosθ (2)

These are called the rotation equations for R2. These ideas

are summarized in Table 5.
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Figure 3.5

Figure 3.6: Table 5
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Example 14. Find the image of x = (1, 1) under a rotation

of π
6

radians (= 30 °) about the origin.

Solution. It follows from (1) with θ = π
6

that

Rπ
6
x =


√
3
2
−1

2

1
2

√
3
2


1

1

 =


√
3−1
2

1+
√
3

2

 ≈
0.37

1.37


or in comma-delimited notation, Rπ

6
(1, 1) ≈ (0.37, 1.37).

A rotation of vectors in R3 is commonly described in rela-

tion to a line through the origin called the axis of rotation

and a unit vector u along that line (Figure 3.7a). The unit

vector and what is called the right-hand rule can be used to

establish a sign for the angle of rotation by cupping the fingers

of your right hand so they curl in the direction of rotation and

observing the direction of your thumb. If your thumb points in

the direction of u, then the angle of rotation is regarded to be

positive relative to u, and if it points in the direction opposite

to u, then it is regarded to be negative relative to u (Figure

3.7b).

For rotations about the coordinate axes in R3, we will take the

unit vectors to be i, j, k, in which case an angle of rotation will
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be positive if it is counterclockwise looking toward the origin

along the positive coordinate axis and will be negative if it is

clockwise. Table 6 shows the standard matrices for the rota-

tion operators on R3 that rotate each vector about one of the

coordinate axes through an angle θ.

Figure 3.7

Figure 3.8: Table 6
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If k is a nonnegative scalar, then the operator T (x) = kx on

R2 or R3 has the effect of increasing or decreasing the length

of each vector by a factor of k. If 0 ≤ k < 1 the operator is

called a contraction with factor k, and if k > 1 it is called a

dilation with factor k (Figure 3.9). Tables 7 and 8 illustrate

these operators. If k = 1, then T is the identity operator.

Figure 3.9

Figure 3.10: Table 7
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Figure 3.11: Table 8

Figure 3.12: Table 9
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In a dilation or contraction of R2 or R3, all coordinates are

multiplied by a nonnegative factor k. If only one coordinate

is multiplied by k, then, depending on the value of k, the

resulting operator is called a compression or expansion

with factor k in the direction of a coordinate axis. This is

illustrated above in Table 9 for R2. The extension to R3 is left

as an exercise.

A matrix operator of the form T (x, y) = (x + ky, y) trans-

lates a point (x, y) in the xy-plane parallel to the x-axis by

an amount ky that is proportional to the y-coordinate of the

point. This operator leaves the points on the x-axis fixed (since

y = 0), but as we progress away from the x-axis, the transla-

tion distance increases. We call this operator the shear in the

x-direction by a factor k. Similarly, a matrix operator of

the form T (x, y) = (x, y + kx) is called the shear in the y-

direction by a factor k. Table 10, which illustrates the basic

information about shears in R2, shows that a shear is in the

positive direction if k > 0 and the negative direction if k < 0.
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Figure 3.13: Table 10

Example 15. In each part, describe the matrix operator

whose standard matrix is shown, and show its effect on the unit

square.

(a) A1 =

1 2

0 1

 (b) A2 =

1 −2

0 1


(c) A3 =

2 0

0 2

 (d) A4 =

2 0

0 1


Solution. By comparing the forms of these matrices to those in

Tables 7, 9, and 10, we see that the matrix A1 corresponds to

a shear in the x-direction by a factor 2, the matrix A2 corre-

sponds to a shear in the x-direction by a factor -2, the matrix

A3 corresponds to a dilation with factor 2, and the matrix A4

corresponds to an expansion in the x direction with factor 2.
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The effects of these operators on the unit square are shown in

Figure 3.14.

Figure 3.14

Figure 3.15

In Table 3 we listed the standard matrices for the orthog-

onal projections onto the coordinate axes in R2. These are
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special cases of the more general matrix operator T
A

: R2 → R2

that maps each point into its orthogonal projection onto a

line L through the origin that makes an angle θ with the

positive x-axis (Figure 3.15).

Let a be the unit vector along the line L. Then since the line

makes an angle θ with the positive x-axis, a = (cosθ, sinθ).

Then ‖a‖ =
√
cos2θ + sin2θ = 1,

e1 .a = (1, 0).(cosθ, sinθ) = cosθ,

e2 .a = (0, 1).(cosθ, sinθ) = sinθ.

Hence T
A

(e1) = projection of e1 along L =
e1 .a

(‖a‖)2
a

= cosθ(cosθ, sinθ) = (cos2θ, sinθcosθ)

and T
A

(e2) = projection of e2 along L =
e2 .a

(‖a‖)2
a

= sinθ(cosθ, sinθ) = (sinθcosθ, sin2θ).

Hence the standard matrix A for the transformation is

A = [T
A

(e1)|TA(e2)] =

 cos2θ sinθcosθ

sinθcosθ sin2θ

 =

 cos2θ 1
2
sin2θ

1
2
sin2θ sin2θ

 .
In keeping with common usage, we will denote this operator

by

P
θ

=

 cos2θ sinθcosθ

sinθcosθ sin2θ

 =

 cos2θ 1
2
sin2θ

1
2
sin2θ sin2θ

 . (3)

Example 16. Use Formula (3) to find the orthogonal projec-
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tion of the vector x = (1, 5) onto the line through the origin

that makes an angle of π
6

radians (= 30 °) with the positive

x-axis.

Solution. Since sin(π
6
) = 1/2 and cos(π

6
) =

√
3/2, it follows

from (3) that the standard matrix for this projection is

Pπ
6

=

 cos2 π
6

sinπ
6
cosπ

6

sinπ
6
cosπ

6
sin2 π

6

 =

 3
4

√
3
4

√
3
4

1
4

 .
Thus, Pπ

6
x =

 3
4

√
3
4

√
3
4

1
4


1

5

 =

3+5
√
3

4
√
3+5
4

 =

2.91

1.68

 .
In Table 1 we listed the reflections about the coordinate

axes in R2. These are special cases of the more general operator

H
θ

: R2 → R2 that maps each point into its reflection about a

line L through the origin that makes an angle θ with the positive

x-axis (Figure 3.16). We could find the standard matrix for H
θ

by finding the images of the standard basis vectors, but instead

we will take advantage of our work on orthogonal projections

by using Formula (3) for P
θ

to find a formula for H
θ
.

You should be able to see from Figure 3.17 that for every vector

x in Rn

P
θ
x− x =

1

2
(H

θ
x− x) or equivalently H

θ
x = (2P

θ
− I)x.
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Thus, it follows that H
θ

= 2P
θ
− I (4)

and hence from (3) that

H
θ

=

cos2θ sin2θ

sin2θ −cos2θ

.

(a) (b)

Figure 3.16

Example 17. Find the reflection of the vector x = (1, 5)

about the line through the origin that makes an angle of π
6

radians (= 30 °) with the x-axis.

Solution. Hπ
6

=

cos2π6 sin2π
6

sin2π
6
−cos2π

6

 =

cosπ3 sinπ
3

sinπ
3
−cosπ

3


=

 1/2
√

3/2
√

3/2 −1/2

 .
Hence Hπ

6
x =

 1
2

√
3
2

√
3
2
−1

2


1

5

 =

 (1+5
√
3)

2

(
√
3−5)
2

 ≈
 4.83

−1.63

 .
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3.5 Properties of Matrix Transfor-

mations

Suppose that T
A

is a matrix transformation from Rn to Rk and

T
B

is a matrix transformation from Rk to Rm. If x is a vector

in Rn, then T
A

maps this vector into a vector T
A

(x) in Rk, and

T
B

, in turn, maps that vector into the vector T
B

(T
A

(x)) in Rm.

This process creates a transformation from Rn to Rm that we

call the composition of T
B

with T
A

and denote by the symbol

T
B
◦ T

A
which is read “T

B
circle T

A
.”

As illustrated in Figure 3.18, the transformation T
A

in the for-

mula is performed first; that is,

(T
B
◦ T

A
)(x) = T

B
(T

A
(x)) (1)

This composition is itself a matrix transformation since

(T
B
◦ T

A
)(x) = T

B
(T

A
(x)) = B(T

A
(x)) = B(Ax) = (BA)x

which shows that it is multiplication by BA. This is expressed

by the formula T
B
◦ T

A
= T

BA
(2)
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Figure 3.17
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Compositions can be defined for any finite succession of

matrix transformations whose domains and ranges have the

appropriate dimensions. For example, to extend Formula (2)

to three factors, consider the matrix transformations

T
A

: Rn → Rk, T
B

: Rk → Rl, T
C

: Rl → Rm

We define the composition (T
C
◦ T

B
◦ T

A
) : Rn → Rm by

(T
C
◦ T

B
◦ T

A
)(x) = T

C
(T

B
(T

A
(x))).

As above, it can be shown that this is a matrix trans-

formation whose standard matrix is CBA and that

T
C
◦ T

B
◦ T

A
= T

CBA
(3).

Sometimes we will want to refer to the standard matrix for a

matrix transformation T : Rn → Rm without giving a name

to the matrix itself. In such cases we will denote the standard

matrix for T by the symbol [T ].

Thus, the equation T (x) = [T ]x states that T (x) is the product

of the standard matrix [T ] and the column vector x. For

example, if T1 : Rn → Rk and if T2 : Rk → Rm, then Formula

(2) can be restated as [T2 ◦ T1 ] = [T2 ][T1 ]. (4)

Similarly, Formula (3) can be restated as [T3 ◦ T2 ◦ T1 ] =

[T3 ][T2 ][T1 ]. (5)
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Example 18. An example for a transformation where compo-

sition is not commutative.

Let T1 : R2 → R2 be the reflection about the line y = x, and

let T2 : R2 → R2 be the orthogonal projection onto the y-axis.

Figure 3.18 illustrates graphically that T1 ◦ T2 and T2 ◦ T1 have

different effects on a vector x. This same conclusion can be

reached by showing that the standard matrices for T1 and T2

do not commute:

[T1 ◦ T2 ] = [T1 ] [T2 ] =

0 1

1 0


0 0

0 1

 =

0 1

0 0


[T2 ◦ T1 ] = [T2 ] [T1 ] =

0 0

0 0


0 1

1 0

 =

0 0

1 0


and so [T1 ◦ T2 ] 6= [T2 ◦ T1 ].

Figure 3.18
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Example 19. An example for a transformation where com-

position is commutative.

Let T1 : R2 → R2 and T2 : R2 → R2 be the matrix operators

that rotate vectors about the origin through the angles θ1 and

θ2 , respectively. Thus the operation (T2 ◦ T1)(x) = T2(T1(x))

first rotates x through the angle θ1 , then rotates T1(x) through

the angle θ2 . It follows that the net effect of T2 ◦T1 is to rotate

each vector in R2 through the angle θ1 + θ2 (Figure 3.19).

Figure 3.19

The standard matrices for these matrix operators, which

are

[T1 ] =

cosθ1 −sinθ1
sinθ1 cosθ1

, [T2 ] =

cosθ2 −sinθ2
sinθ2 cosθ2

,
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[T2 ◦ T1 ] =

cos(θ1 + θ2) −sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)


should satisfy (4). With the help of some basic trigonometric

identities, we can confirm that this is so as follows:

[T2 ] [T1 ] =

cosθ2 −sinθ2
sinθ2 cosθ2


cosθ1 −sinθ1
sinθ1 cosθ1


=

cosθ2cosθ1 − sinθ2sinθ1 −(cosθ2sinθ1 + sinθ2cosθ1)

sinθ2cosθ1 + cosθ2sinθ1 −sinθ2sinθ1 + cosθ2cosθ1


=

cos(θ1 + θ2) −sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)


= [T2 ◦ T1 ].

One-to-One Matrix Transformations

A matrix transformation T
A

: Rn → Rm is said to be one-

to-one if T
A

maps distinct vectors (points) in Rn into distinct

vectors (points) in Rm.

(See Figure 3.20) This idea can be expressed in various ways.

For example, you should be able to see that the following are

just restatements of the above definition.

1. T
A

is one-to-one if for each vector b in the range of A there
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is exactly one vector x in Rn such that T
A
x = b.

2. T
A

is one-to-one if the equality T
A

(u) = T
A

(v) implies that

u = v.

Figure 3.20

If T
A

: Rn → Rm is a matrix transformation, then the set of

all vectors in Rn that T
A

maps into 0 is called the kernel of T
A

and is denoted by ker(T
A

). The set of all vectors in Rm that

are images under this transformation of at least one vector in

Rn is called the range of T
A

and is denoted by R(T
A

).

In brief:

ker(T
A

) = null space of A (6)

R(T
A

) = column space of A (7)

For a linear operator T
A

: Rn → Rn, the following theorem

establishes fundamental relationships between the invertibility

of A and properties of T
A

.
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Theorem 3.19 If A is an n × n matrix and T
A

: Rn → Rn

is the corresponding matrix operator, then the following

statements are equivalent.

(a) A is invertible.

(b) The kernel of T
A

is {0}.

(c) The range of T
A

is Rn.

(d) T
A

is one-to-one.

Proof. We can prove this theorem by establishing the chain of

implications (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a) ⇒ (b)

Assume that A is invertible. We know

ker(T
A

) = {x ∈ Rn : T
A

(x) = 0} = {x ∈ Rn : A(x) = 0}.

Since A is invertible, the system Ax = 0 has only the trivial

solution and so the kernel of T
A

is {0}.

(b) ⇒ (c)

Assume that the kernel of T
A

is {0}. It follows from Formula

(6) that the null space of A is {0} and hence that A has nullity

0. This in turn implies that the rank of A is n and hence that

the column space of A is all of Rn. Formula (7) now implies

that the range of T
A

is Rn.
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(c) ⇒ (d)

Assume that the range of T
A

is Rn. It follows from Formula (6)

that the column space of A is Rn and hence is of dimension n.

Thus rank of A is n and so by dimenson theorem for matrices,

we get that A has nullity 0. Hence null space of A is {0}.

For any two vectors u and v in Rn, we have

T
A

(u) = T
A

(v)⇒ Au = Av ⇒ A(u− v) = Au− Av = 0

⇒ u− v ∈ nullspace of A⇒ u− v = 0

⇒ u = v.

Hence T
A

is one-to-one.

(d) ⇒ (a)

Assume T
A

is one-to-one. Then T
A

(0) = A0 = 0.

Since T
A

is one-to-one, 0 is the only vector in Rn such that

T
A

(0) = A0 = 0. Hence the system Ax = 0 has only trivial

solution and so A is invertible.

Remark. If A is an m × n matrix, here are three ways of

viewing the same subspace of Rn:

� Matrix view: the null space of A

� System view: the solution space of Ax = 0

� Transformation view: the kernel of T
A
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and here are three ways of viewing the same subspace of Rm:

� Matrix view: the column space of A

� System view: all b in Rm for which Ax = b is consistent

� Transformation view: the range of T
A

Example 20. The rotation operator on R2 is one-to-one.

Let T denote operator R2 that rotates vectors counterclockwise

about the origin through an angle θ. Then the standard matrix

for T is

[T ] =

cosθ −sinθ
sinθ cosθ

.

Then det [T ] = cos2θ + sin2θ = 1 6= 0.

Since det [T ] 6= 0, T is one-to-one.

nverse of a One-to-One Matrix Operator If T
A

: Rn → Rn is a

one-to-one matrix operator, then it follows from Theorem 3.19

that A is invertible. The matrix operator T
A−1 : Rn → Rn that

corresponds to A−1 is called the inverse operator or (more

simply) the inverse of T
A

. This terminology is appropriate

because T
A

and T
A−1 cancel the effect of each other in the sense

that if x is any vector in Rn, then

T
A

(T
A−1 (x)) = AA−1x = Ix = x

T
A−1 (TA(x)) = A−1Ax = Ix = x
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or, equivalently,

T
A
◦ T

A−1 = T
AA−1 = T

I

T
A−1 ◦ TA = T

A−1A
= T

I

From a more geometric viewpoint, if w is the image

of x under T
A

, then T
A−1 maps w backinto x, since

T
A−1 (w) = T

A−1 (T
A

(x)) = x.

This is illustrated in Figure 3.21 for R2. Example 21.

Figure 3.21

Standard Matrix for T−1

Let T : R2 → R2 be the operator that rotates each vector in

R2 through the angle θ. The standard matrix for T is

[T ] =

cosθ −sinθ
sinθ cosθ

.
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Then det [T ] = cos2θ + sin2θ = 1 6= 0.

Since det [T ] 6= 0, T is invertible.

By interchanging the diagonal elements and changing the signs

of the off-diagonal elements, we get the adjoint of [T ] as

adj [T ] =

 cosθ sinθ

−sinθ cosθ

 .
∴ [T−1] = [T ]−1 =

1

det [T ]
× adj [T ]

= 1

 cosθ sinθ

−sinθ cosθ

 =

cos(−θ) −sin(−θ)

sin(−θ) cos(−θ)

,

which is the standard matrix for the rotation through the angle

−θ.

Example 22. Show that the operator T : R2 → R2 defined

by the equations w1 = 2x1 + x2 , w2 = 3x1 + 4x2 is one-to-one,

and find T−1(w1 , w2).

Solution. The matrix form of these equations isw1

w2

 =

2 1

3 4


x1

x2


so the standard matrix for T is

[T ] =

2 1

3 4

.

This matrix is invertible (so T is one-to-one) and the standard
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matrix for T−1 is

[T−1] = [T ]−1 =

 4
5
−1

5

−3
5

2
5

.

Thus [T−1]

w1

w2

 =

 4
5
−1

5

−3
5

2
5


w1

w2

 =

 4
5
w1 − 1

5
w2

−3
5
w1 + 2

5
w2


from which we conclude that

T−1(w1 , w2) = (4
5
w1 − 1

5
w2 ,−3

5
w1 + 2

5
w2).

Theorem 3.21 - Equivalent statements

If A is an n × n matrix, then the following statements are

equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In .

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) 6= 0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

(j) The column vectors of A span Rn.
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(k) The row vectors of A span Rn.

(l) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

(p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is 0.

(r) The kernel of T
A

is {0}.

(s) The range of T
A

is Rn.

(t) T
A

is one-to-one.

Problems

1. Let T1 : R2 → R2 and T2 : R2 → R2 be T1(x, y) = (−x, y)

and T2(x, y) = (x,−y) respectively. Show that these transfor-

mations commute.

2. Let T1(x, y) = (x+ y, x− y) and T2(x, y) = (3x, 2x+ 4y).

(a) Find the standard matrices for T1 and T2 .

(b) Find the standard matrices for T1 ◦ T2 and T2 ◦ T1 .

(c) Use the matrices in part (b) to find the formulas for

T1(T2(x, y)) and T2(T1(x, y)).
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MODULE

FOUR

EIGENVALUES, EIGENVECTORS,

INNER PRODUCT SPACES,

DIAGONALIZATION

4.1 Geometry of Matrix Operators

on R2

The effect of a matrix operator on R2 can often be deduced

by studying how it transforms the points that form the unit

square. The following theorem, which we state without proof,

215
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shows that if the operator is invertible, then it maps each line

segment in the unit square into the line segment connecting

the images of its endpoints. In particular, the edges of the unit

square get mapped into edges of the image (see Figure 4.1 in

which the edges of a unit square and the corresponding edges

of its image have been numbered).

Figure 4.1

Theorem 4.1 If T : R2 → R2 is multiplication by an invertible

matrix, then:

(a) The image of a straight line is a straight line.

(b) The image of a line through the origin is a line through the

origin.

(c) The images of parallel lines are parallel lines.

(d) The image of the line segment joining points P and Q is

the line segment joining the images of P and Q.
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(e) The images of three points lie on a line if and only if the

points themselves lie on a line.

Example 1. According to Theorem 4.1, the invertible

matrix A =

3 1

2 1

 maps the line y = 2x+ 1 into another line.

Find its equation.

Solution. Let (x, y) be a point on the line y = 2x + 1, and let

(x
′
, y
′
) be its image under multiplication by A. Thenx′

y
′

 =

3 1

2 1


x
y

 and

x
y

 =

3 1

2 1


−1 x′

y
′

 =

 1 −1

−2 3


x′
y
′


so x = x

′ − y′

y = −2x
′
+ 3y

′
.

Substituting these expressions in y = 2x+ 1 yields

−2x
′
+ 3y

′
= −2(x

′ − y′) + 1

or, equivalently, y
′
= 4

5
x
′
+ 1

5
.

Example 2. Sketch the image of the unit square under

multiplication by the invertible matrix A =

0 1

2 1

. Label the
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vertices of the image with their coordinates, and number the

edges of the unit square and their corresponding images.

Since

0 1

2 1


0

0

 =

0

0

 ,
0 1

2 1


1

0

 =

0

2

 ,
0 1

2 1


0

1

 =

1

1

 ,
0 1

2 1


1

1

 =

1

3


the image of the unit square is a parallelogram with vertices

(0, 0), (0, 2), (1, 1), and (1, 3).

Figure 4.2
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Example 3. Transformation of the Unit Square

(a) Find the standard matrix for the operator on R2 that first

shears by a factor of 2 in the x-direction and then reflects the

result about the line y = x. Sketch the image of the unit square

under this operator. (b) Find the standard matrix for the op-

erator on R2 that first reflects about y = x and then shears by

a factor of 2 in the x-direction. Sketch the image of the unit

square under this operator. (c) Confirm that the shear and the

reflection in parts (a) and (b) do not commute.

Solution. (a) The standard matrix for the shear is A1 =

1 2

0 1


and for the reflection is A2 =

0 1

1 0

.

Thus, the standard matrix for the shear followed by the reflec-

tion is

A2A1 =

0 1

1 0


1 2

0 1

 =

0 1

1 2

.

(b) The standard matrix for the reflection followed by the shear

is

A1A2 =

1 2

0 1


0 1

1 0

 =

2 1

1 0

.
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(c) The computations in solutions (a) and (b) show that A1A2 6=

A2A1 , so the standard matrices, and hence the operators, do

not commute. The same conclusion follows from Figures 4.3

and 4.4 since the two operators produce different images of the

unit square.

Figure 4.3

Figure 4.4
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In Example 3 we illustrated the effect on the unit square

in R2 of a composition of shears and reflections. Our next

objective is to show how to decompose any 2 × 2 invertible

matrix into a product of matrices in Table 1, thereby allowing

us to analyze the geometric effect of a matrix operator in R2 as

a composition of simpler matrix operators.
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Figure 4.5: Table 1



223

Theorem 4.2 If E is an elementary matrtix, then

T
E

: R2 → R2 is one of the following:

(a) A shear along a coordinate axis.

(b) A reflection about y = x.

(c) A compression along a coordinate axis.

(d) An expansion along a coordinate axis.

(e) A reflection about a coordinate axis.

(f) A compression or expansion along a coordinate axis followed

by a reflection about a coordinate axis.

Proof. Because a 2 × 2 elementary matrix results from

performing a single elementary row operation on the 2 × 2

identity matrix, such a matrix must have one of the following

forms:

1 0

k 1

 ,
1 k

0 1

 ,
0 1

1 0

 ,
k 0

0 1

 ,
1 0

0 k


The first two matrices represent shears along coordinate axes,

and the third represents a reflection about y = x. If k > 0, the

last two matrices represent compressions or expansions along

coordinate axes, depending on whether 0 ≤ k < 1 or k > 1. If

k < 0, and if we express k in the form k = −k1 , where k1 > 0,

then the last two matrices can be written as



224k 0

0 1

 =

−k1 0

0 1

 =

−1 0

0 1


k1 0

0 1

 (1)

1 0

0 k

 =

1 0

0 −k1

 =

1 0

0 −1


1 0

0 k1

 (2)

Since k1 > 0, the product in (1) represents a compression or

expansion along the x-axis followed by a reflection about the

y-axis, and (2) represents a compression or expansion along

the y-axis followed by a reflection about the x-axis. In the

case where k = −1, transformations (1) and (2) are simply

reflections about the y-axis and x-axis, respectively.

We know from that an invertible matrix can be expressed

as a product of elementary matrices, so above theorem implies

the following result.

Theorem 4.3 If T
A

: R2 → R2 is multiplication by an

invertible matrix A, then the geometric effect of T
A

is the

same as an appropriate succession of shears, compressions,

expansions, and reflections.

Example 4. In Example 2 we illustrated the effect on the

unit square of multiplication by A =

0 1

2 1

 (see Figure 4.2).
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Express this matrix as a product of elementary matrices, and

then describe the effect of multiplication by A in terms of

shears, compressions, expansions, and reflections.

Solution. The matrix A can be reduced to the identity matrix

as follows:0 1

2 1

→
2 1

0 1

→
1 1/2

0 1

→
1 0

0 1


These three successive row operations can be performed by

multiplying A on the left successively by

E1 =

0 1

1 0

 , E2 =

1/2 0

0 1

 , E3 =

1 −1/2

0 1


Inverting these matrices we have

A =

0 1

2 1

 = E−1
1
E−1

2
E−1

3
=

0 1

1 0


2 0

0 1


1 1/2

0 1


Reading from right to left we can now see that the geometric

effect of multiplying by A is equivalent to successively

1. shearing by a factor of 1

2 in the x-direction

2. expanding by a factor of 2 in the x-direction

3. reflecting about the line y = x.

This is shown in Figure 4.6, which agrees with that in Ex. 2.
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Figure 4.6

Example 5. Discuss the geometric effect on the unit square

of multiplication by a diagonal matrix A =

k1 0

0 k2

 in which

the entries k1 and k2 are positive real numbers (6= 1).

Solution. The matrix A is invertible and can be expressed as

A =

k1 0

0 k2

 =

1 0

0 k2


k1 0

0 1


which show that multiplication by A causes a compression or

expansion of the unit square by a factor of k1 in the x-direction

followed by an expansion or compression of the unit square by

a factor of k2 in the y-direction.

Example 6. As illustrated in Figure 4.7, multiplication by

the matrix A =

−1 0

0 −1


has the geometric effect of reflecting the unit square about the

origin. Note, however, that the matrix equation
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A =

−1 0

0 −1

 =

−1 0

0 1


1 0

0 −1


together with Table 1 shows that the same result can be

obtained by first reflecting the unit square about the x-axis

and then reflecting that result about the y-axis. See Figure 4.7.

Figure 4.7
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Example 7. Reflection About the Line y = −x

Verify that multiplication by the matrix A=

 0 −1

−1 0

 reflects

the unit square about the line y = −x (Figure 4.8).

Figure 4.8
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4.2 Eigenvalues and Eigenvectors

If A is an n × n matrix, then a nonzero vector x in Rn is called

an eigenvector of A (or of the matrix operator T
A

) if Ax is a

scalar multiple of x; that is, Ax = λx for some scalar λ. The

scalar λ is called an eigenvalue of A (or of T
A

), and x is said

to be an eigenvector corresponding to λ.

Example 8.The vector x =

1

2

 is an eigenvector of

A =

3 0

8 −1

 corresponding to the eigenvalue λ = 3, since

Ax =

3 0

8 −1


1

2

 =

3

6

 = 3x.

Computing Eigenvalues and Eigenvectors

If A is an n × n matrix, then λ is an eigenvalue of A if and

only if it satisfies the equation det(λI - A) = 0. (1)

This is called the characteristic equation of A.

When the determinant det(λI - A) in (1) is expanded, the

characteristic equation of A takes the form
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λn + c1λ
n−1 + · · ·+ cn = 0 (2)

where the left side of this equation is a polynomial of de-

gree n in which the coefficient of λn is 1. The polynomial

p(λ) = λn + c1λ
n−1 + · · ·+ cn (3)

is called the characteristic polynomial of A.

Since a polynomial of degree n has at most n distinct roots,

it follows from (2) that the characteristic equation of an n ×

n matrix A has at most n distinct solutions and consequently

the matrix has at most n distinct eigenvalues.

Solving roots of the equation (2) are called the eigen values of

A.

Steps to find eigen values

1. Consider the matrix λI - A and det(λI - A).

(characteristic matrix and characteristic polynomial respectively)

2. Equate det(λI - A)=0. (characteristic equation)

3. Find the roots of characteristic equation, which are the eigen

values.

Example 9. Find the eigenvalues of A =


0 1 0

0 0 1

4 −17 8

.

The characteristic polynomial of A is det(λI - A)
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= det


λ −1 0

0 λ −1

−4 17 λ− 8

 = λ3 − 8λ2 + 17λ− 4.

The eigenvalues of A must therefore satisfy the cubic equation

λ3 − 8λ2 + 17λ− 4 = 0⇒ (λ− 4)(λ2 − 4λ+ 1) = 0⇒

λ = 4, λ = 2 +
√

3, λ = 2−
√

3.

Example 10. Find the eigenvalues of the upper triangular

matrix

A=



a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


.

The characteristic equation, det(λI - A)=0

⇒ det



λ− a11 −a12 −a13 −a14

0 λ− a22 −a23 −a24

0 0 λ− a33 −a34

0 0 0 λ− a44


= 0

⇒ (λ− a11)(λ− a22)(λ− a33)(λ− a44) = 0

⇒ the eigen values are λ = a11 , λ = a22 , λ = a33 , λ = a44

which are precisely the diagonal entries of A.

Example 11. Find the eigenvalues of the lower triangular



232

matrix

A=


1/2 0 0

−1 2/3 0

5 −8 −1/4

.

Proceeding as in the above example, we get eigen values are

precisely the diagonal entries of A.

Theorem 4.4. If A is an n × n triangular matrix (upper

triangular, lower triangular, or diagonal), then the eigenvalues

of A are the entries on the main diagonal of A.

Proof. Let A=



a11 a12 . . . a1n

0 a22 . . . a2n

...
...

...

0 0 . . . ann


.

The characteristic equation, det(λI - A)=0

⇒ det



λ− a11 −a12 . . . −a1n

0 λ− a22 . . . −a2n

...
...

...

0 0 . . . λ− ann


= 0

⇒ (λ− a11)(λ− a22). . . . .(λ− ann) = 0

⇒ the eigen values are λ = a11 , λ = a22 , . . . , λ = ann

which are precisely the diagonal entries of A.

Theorem 4.5. If A is an n × n matrix, the following
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statements are equivalent.

(a) λ is an eigenvalue of A.

(b) λ is a solution of the characteristic equation det(λI - A) =

0.

(c) The system of equations (λI - A)x = 0 has nontrivial

solutions.

(d) There is a nonzero vector x such that Ax = λx.

Finding Eigenvectors and Bases for Eigenspaces

Now that we know how to find the eigenvalues of a matrix, we

will consider the problem of finding the corresponding eigen-

vectors. By definition, the eigenvectors of A corresponding to

an eigenvalue λ are the nonzero vectors that satisfy (λI - A)x

= 0 Thus, we can find the eigenvectors of A corresponding

to λ by finding the nonzero vectors in the solution space of

this linear system. This solution space, which is called the

eigenspace of A corresponding to λ, can also be viewed as:

1. the null space of the matrix λI - A

2. the kernel of the matrix operator T
λI−A : Rn → Rn

3. the set of vectors for which Ax = λx.

Notice that x = 0 is in every eigenspace but is not an eigen vector. This
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is the only vector that distinct eigenspaces have in common.

Example 12. Find bases for the eigenspaces of the matrix

A=

−1 3

2 0

.

Solution. The characteristic equation of A is

det

λ+ 1 −3

−2 λ

 = 0

⇒ λ(λ+ 1)− 6 = (λ− 2)(λ+ 3) = 0⇒ λ = 2, λ = −3.

So the eigenvalues of A are λ=2 and λ= -3. Thus, there are

two eigenspaces of A, one for each eigenvalue.

By definition, x =

x1

x2

 is an eigenvector of A corresponding

to an eigenvalue λ if and only if (λI - A)x = 0,

that is,

λ+ 1 −3

−2 λ


x1

x2

 =

0

0

.

In the case where λ = 2 this equation becomes 3 −3

−2 2


x1

x2

 =

0

0

.

whose general solution is x1 = t, x2 = t (since solving we get

x1 = x2).

Since this can be written in matrix form as
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x2

 =

t
t

 = t

1

1


it follows that

1

1

 is a basis for the eigenspace corresponding

to λ = 2.

Similarly

−3/2

1

 is a basis for the eigenspace corresponding

to λ = -3.

Example 13. Find bases for the eigenspaces of A=


0 0 −2

1 2 1

1 0 3

.

Solution. The characteristic equation of A is λ3−5λ2+8λ−4 =

0, or (λ − 1)(λ − 2)2 = 0. Thus, the distinct eigenvalues of A

are λ = 1 and λ = 2, so there are two eigenspaces of A.

By definition, x =


x1

x2

x3

 is an eigenvector of A corresponding

to λ if and only if x is a nontrivial solution of (λI - A)x = 0,

or in matrix form,
λ 0 2

−1 λ− 2 −1

−1 0 λ− 3



x1

x2

x3

 =


0

0

0

. (∗)
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In the case where λ = 2, (*) becomes
2 0 2

−1 0 −1

−1 0 −1



x1

x2

x3

 =


0

0

0

.

Solving this system using Gaussian elimination yields

x1 = −s, x2 = t, x3 = s.

Thus, the eigenvectors of A corresponding to λ = 2 are the

nonzero vectors of the form

x =


−s

t

s

 =


−s

0

s

+


0

t

0

 = s


−1

0

1

+ t


0

1

0

 .

Since


−1

0

1

 and


0

1

0

 are linearly independent, these vectors

form a basis for the eigenspace corresponding to λ = 2.

If λ = 1, then (*) becomes
1 0 2

−1 −1 −1

−1 0 −2



x1

x2

x3

 =


0

0

0

. Solving this system yields

x1 = −2s, x2 = s, x3 = s.

Thus, the eigenvectors corresponding to λ = 1 are the nonzero



237

vectors of the form x =


−2s

s

s

 = s


−2

1

1

. Thus


−2

1

1

 is a

basis for the eigenspace corresponding to λ = 1.

4.2.1 Eigenvalues and Invertibility

Theorem 4.6. A square matrix A is invertible if and only if

λ = 0 is not an eigen value of A.

Proof. Assume that A is an n × n matrix. Observe first

that λ = 0 is a solution of the characteristic equation

λn + c1λ
n−1 + · · ·+ cn = 0 if and only if the constant term cn is

zero. Thus, it suffices to prove that A is invertible if and only

if cn 6= 0. But det(λI - A) = λn + c1λ
n−1 + · · ·+ cn .

On setting λ = 0, det(-A) = cn or (-1)n det(A) = cn .

It follows from the last equation that det(A) = 0 if and only if

cn = 0, and this in turn implies that A is invertible if and only

if cn 6= 0.
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Example 14. The matrix A=


0 0 −2

1 2 1

1 0 3

 in the above

example is invertible since it has eigenvalues λ = 1 and λ = 2,

neither of which is zero. One can also check that det(A) 6= 0.

Theorem 4.7. - Equivalent Statements

If A is an n × n matrix, then the following statements are

equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In .

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

(f) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) 6= 0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

(j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l) The column vectors of A form a basis for Rn.
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(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

(p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is 0.

(r) The kernel of T
A

is 0.

(s) The range of T
A

is Rn.

(t) T
A

is one-to-one.

(u) λ = 0 is not an eigenvalue of A.

4.2.2 Eigenvalues of General LinearTransfor-

mations

If T : V → V is a linear operator on a vector space V, then a

nonzero vector x in V is called an eigenvector of T if T(x) is

a scalar multiple of x; that is, T(x) = λx for some scalar λ.

The scalar λ is called an eigenvalue of T, and x is said to be

an eigenvector corresponding to λ.

Problem.
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Find the eigenvalues and the bases for the eigenspace corre-

sponding to the eigenvalues of the follwing matrices:

1.

 5 −2

−2 2

. 2.


8 −6 2

−6 7 −4

2 −4 3

. 3.


−2 2 −3

2 1 −6

−1 −2 0

.

4.3 Diagonalization

Products of the form P−1AP in which A and P are n × n

matrices and P is invertible will be our main topic of study

in this section. There are various ways to think about such

products, one of which is to view them as transformations

A → P−1AP in which the matrix A is mapped into the matrix

P−1AP. These are called similarity transformations. Such

transformations are important because they preserve many

properties of the matrix A.

For example, if we let B = P−1AP , then A and B have the

same determinant since

det(B) = det(P−1AP) = det(P−1) det(A) det(P)
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= 1/det(P) det(A) det(P) = det(A).

In general, any property that is preserved by a similarity

transformation is called a similarity invariant and is said to

be invariant under similarity. Table below lists the most

important similarity invariants.

Property Description

Determinant A and P−1AP have the same determinant.

Invertibility A is invertible if and only if P−1AP is invertible.

Rank A and P−1AP have the same rank.

Nullity A and P−1AP have the same nullity.

Trace A and P−1AP have the same trace.

Characteristic A and P−1AP have the same

polynomial characteristic polynomial.

Eigenvalues A and P−1AP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of A (and hence of

P−1AP) then the eigenspace of A corresponding

to λ and the eigenspace of P−1AP

corresponding to λ have the same dimension.

If A and B are square matrices, then we say that B is simi-

lar to A if there is an invertible matrix P such that B = P−1AP.
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Note that if B is similar to A, then it is also true that A

is similar to B since we can express A as A = Q−1BQ by taking

Q = P−1. This being the case, we will usually say that A and

B are similar matrices if either is similar to the other.

A square matrix A is said to be diagonalizable if it is similar

to some diagonal matrix; that is, if there exists an invertible

matrix P such that P−1AP is diagonal. In this case the matrix

P is said to diagonalize A.

Theorem 4.8. If A is an n × n matrix, the following

statements are equivalent.

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

Proof. (a) ⇒ (b)

Since A is assumed to be diagonalizable, it follows that there

exist an invertible matrix P and a diagonal matrix D such that

P−1AP = D or, equivalently, AP = PD (1).

If we denote the column vectors of P by p1 , p2 , . . . , pn , and if

we assume that the diagonal entries of D are λ1 , λ2 , . . . , λn . We

know that to multiply a matrix P on the right by a diagonal

matrix D, multiply successive columns of P by the successive
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diagonal entries of D. So the left side of (1) can be expressed

as

AP = A

[
p1 p2 . . . pn

]
=

[
Ap1 Ap2 . . . Apn

]
and, the right side of (1) can be expressed as

PD =

[
λ1p1 λ2p2 . . . λnpn

]
.

Thus, it follows from (1) that

Ap1 = λ1p1 , Ap2 = λ2p2 , . . . , Apn = λnpn (2).

Since P is invertible, we know from Theorem 4.7. above that

its column vectors p1 , p2 , . . . , pn are linearly independent (and

hence nonzero). Thus, it follows from (2) that these n column

vectors are eigenvectors of A.

(b) ⇒ (a)

Assume that A has n linearly independent eigenvectors,

p1 , p2 , . . . , pn , and that λ1 , λ2 , . . . , λn are the corresponding

eigenvalues. If we let P =

[
p1 p2 . . . pn

]
and if we let D

be the diagonal matrix that has λ1 , λ2 , . . . , λn as its successive

diagonal entries, then

AP = A

[
p1 p2 . . . pn

]
=

[
Ap1 Ap2 . . . Apn

]
=[

λ1p1 λ2p2 . . . λnpn

]
= PD. Since the column vectors of

P are linearly independent, it follows from Theorem 4.7. above
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that P is invertible, so that this last equation can be rewritten

as P−1AP = D, which shows that A is diagonalizable.

Theorem 4.9. (a) If λ1 , λ2 , . . . , λk are distinct eigenvalues of

a matrix A, and if v1 , v2 , . . . , vk are corresponding eigenvectors,

then {v1 , v2 , . . . , vk} is a linearly independent set.

(b) An n × n matrix with n distinct eigenvalues is diagonaliz-

able.

Proof. (a) Let v1 , v2 , . . . , vk be eigenvectors of A corresponding

to distinct eigenvalues λ1 , λ2 , . . . , λk . We will assume that

v1 , v2 , . . . , vk are linearly dependent and obtain a contradiction.

We can then conclude that v1 , v2 , . . . , vk are linearly indepen-

dent.

Since an eigenvector is nonzero by definition, {v1} is lin-

early independent. Let r be the largest integer such that

{v1 , v2 , . . . , vr} is linearly independent. Since we are assuming

that {v1 , v2 , . . . , vk} is linearly dependent, r satisfies 1≤r<k.

Moreover, by the definition of r, {v1 , v2 , . . . , vr+1} is linearly

dependent. Thus, there are scalars c1 , c2 , . . . , cr+1 , not all zero,

such that

c1v1 + c2v2 + · · ·+ cr+1vr+1 = 0 (1)
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Multiplying both sides of (1) by A and using the fact that

Av1 = λ1v1 , Av2 = λ2v2 , . . . , Avr+1 = λr+1vr+1

we obtain c1λ1v1 + c2λ2v2 + · · · + cr+1λr+1vr+1 = 0 (2)

If we now multiply both sides of (1) by λr+1 and subtract the

resulting equation from (2) we obtain

c1(λ1 − λr+1)v1 + c2(λ2 − λr+1)v2 + · · ·+ cr(λr − λr+1)vr = 0.

Since {v1 , v2 , . . . , vr} is a linearly independent set, this equation

implies that

c1(λ1 − λr+1) = c2(λ2 − λr+1) = · · · = cr(λr − λr+1) = 0 and

since λ1 , λ2 , . . . , λr+1 are assumed to be distinct, it follows that

c1 = c2 = · · · = cr = 0. (3)

Substituting these values in (1) yields cr+1vr+1 = 0.

Since the eigenvector vr+1 is nonzero, it follows that

cr+1 = 0. (4)

But equations (3) and (4) contradict the fact that c1 , c2 , . . . , cr+1

are not all zero so the proof is complete.

(b) Let A be an n × n matrix with n distinct eigenvalues.

By (a) part of this theorem, the n eigenvectors corresponding

to these eigenvalues are linearly independent. Since A has

n linearly independent eigenvectors, by Theorem 8. A is
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diagonalizable.

The Converse of Theorem 4.9(b) Is False

Consider the matrices I =


1 0 0

0 1 0

0 0 1

 and J =


1 1 0

0 1 1

0 0 1

.

Both of these matrices have only one distinct eigenvalue,

namely λ = 1, and hence only one eigenspace. One can solve

the characteristic equations

(λI − I)x = 0 and (λI − J)x = 0 with λ = 1

and show that for I the eigenspace is three-dimensional (all

of R3) and for J it is one-dimensional, consisting of all scalar

multiples of x=


1

0

0

.

This shows that the converse of Theorem 4.9(b) is false, since

we have produced two 3 × 3 matrices with fewer than three

distinct eigenvalues, one of which is diagonalizable and the

other of which is not.

A Procedure for Diagonalizing an n × n Matrix

Step 1. Determine first whether the matrix is actually diago-

nalizable by searching for n linearly independent eigenvectors.
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One way to do this is to find a basis for each eigenspace and

count the total number of vectors obtained. If there is a total

of n vectors, then the matrix is diagonalizable, and if the total

is less than n, then it is not.

Step 2. If you ascertained that the matrix is diagonalizable,

then form the matrix P =

[
p1 p2 . . . pn

]
whose column

vectors are the n basis vectors you obtained in Step 1.

Step 3. P−1AP will be a diagonal matrix whose successive

diagonal entries are the eigenvalues λ1 , λ2 , . . . , λn that corre-

spond to the successive columns of P.

Example 15. Find a matrix P that diagonalizes A=


0 0 −2

1 2 1

1 0 3

.

We have already found in Example 13. that the characteristic

equation of A to be (λ − 1)(λ − 2)2 = 0 and we found the

following bases for the eigenspaces:

λ = 2 : p1 =


−1

0

1

 and p2 =


0

1

0

.
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λ = 1 : p3 =


−2

1

1

.

There are three basis vectors in total, so the matrix

P =


−1 0 −2

0 1 1

1 0 1

 diagonalizes A.

One can verify that P−1AP =


1 0 2

1 1 1

−1 0 −1




0 0 −2

1 2 1

1 0 3



−1 0 −2

0 1 1

1 0 1



=


2 0 0

0 2 0

0 0 1

.

Example 16. Show that the following matrix is not di-

agonalizable: A =


1 0 0

1 2 0

−3 5 2

.

Solution. The characteristic equation of A is

det


λ− 1 0 0

−1 λ− 2 0

3 −5 λ− 2

 = 0
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⇒ (λ − 1)(λ − 2)2 = 0 ⇒ λ = 1, λ = 2. Thus the distinct

eigenvalues of A are λ = 1 and λ = 2. We can find that the

bases for the eigenspaces are

λ = 1 : p1 =


1/8

−1/8

1

 λ = 2 : p2 =


0

0

1

.

Since A is a 3 × 3 matrix and there are only two basis vectors

in total, A is not diagonalizable.

Example 17. We saw in Example 9. that A=


0 1 0

0 0 1

4 −17 8


has three eigen values λ = 4, λ = 2 +

√
3, λ = 2−

√
3.

So A is diagonalizable and

P−1AP =


4 0 0

0 2 +
√

3 0

0 0 2−
√

3

 for some invertible matrix

P−1.

Example 18. From Theorem 4.4., the eigenvalues of a

triangular matrix are the entries on its main diagonal. Thus, a

triangular matrix with distinct entries on the main diagonal is
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diagonalizable. For example,

A =



−1 2 4 0

0 3 1 7

0 0 5 8

0 0 0 −2


is a diagonalizable matrix with eigenvalues

λ1 = −1, λ2 = 3, λ3 = 5, λ4 = −2.

Theorem 4.10. If k is a positive integer, λ is an eigenvalue of

a matrix A, and x is a corresponding eigenvector, then λk is

an eigenvalue of Ak and x is a corresponding eigenvector.

Example 19. The eigenvalues and corresponding eigenvectors

of the matrix A =


1 0 0

1 2 0

−3 5 2

 are found in Example 16.

The eigenvalues of A are λ = 1 and λ = 2, so the eigenvalues

of A7 are λ = 17 = 1 and λ = 27 =128.

The eigenvectors p1 and p2 obtained in Example 16. corre-

sponding to the eigenvalues λ = 1 and λ = 2 of A are also the

eigenvectors corresponding to the eigenvalues λ = 1 and λ =

128 of A7.

Computing Powers of a Matrix
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The problem of computing powers of a matrix is greatly

simplified when the matrix is diagonalizable. Suppose that A

is a diagonalizable n × n matrix, that P diagonalizes A, and

that P−1AP =



λ1 0 . . . 0

0 λ2 . . . 0

...
...

...

0 0 . . . λn


= D

where λ1 , λ2 , . . . , λn are the eigen values of A.

Squaring both sides of this equation yields

(P−1AP)2 =



λ2
1

0 . . . 0

0 λ2
2
. . . 0

...
...

...

0 0 . . . λ2
n


= D2.

We can rewrite the left side of this equation as

(P−1AP)2 = P−1AP P−1AP = P−1AIAP = P−1A2P.

from which we obtain the relationship P−1A2P = D2. More

generally, if k is a positive integer, then a similar computation

will show that P−1AkP = Dk =



λk
1

0 . . . 0

0 λk
2
. . . 0

...
...

...

0 0 . . . λk
n


,

which we can rewrite as
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Ak = PDkP−1 = P



λk
1

0 . . . 0

0 λk
2
. . . 0

...
...

...

0 0 . . . λk
n


P−1.

Example 20. Find A13, where A=


0 0 −2

1 2 1

1 0 3

.

As done in Example 13. we can show that A is diagonalizable

and

D=P−1AP=


2 0 0

0 2 0

0 0 1

,

where P=


−1 0 −2

0 1 1

1 0 1

 and P−1=


1 0 2

1 1 1

−1 0 −1

.

Hence A13 = PD13P−1 =


1 0 2

1 1 1

−1 0 −1




213 0 0

0 213 0

0 0 113



−1 0 −2

0 1 1

1 0 1


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=


−8190 0 −16382

8191 8192 8191

8191 0 16383

.

4.3.1 Geometric and Algebraic Multiplicity

It can be proved that if λ0 is an eigenvalue of A, then the

dimension of the eigenspace corresponding to λ0 cannot exceed

the number of times that λ - λ0 appears as a factor of the

characteristic polynomial of A. For example, in Examples

15 and 16 the characteristic polynomial is (λ - 1)(λ - 2)2.

Thus, the eigenspace corresponding to λ = 1 is at most (hence

exactly) one-dimensional, and the eigenspace corresponding

to λ = 2 is at most two-dimensional. In Example 15 the

eigenspace corresponding to λ = 2 actually had dimension 2,

resulting in diagonalizability, but in Example 16 the eigenspace

corresponding to λ = 2 had only dimension 1, resulting in non

diagonalizability.

There is some terminology that is related to these ideas. If λ0
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is an eigenvalue of an n × n matrix A, then the dimension of

the eigenspace corresponding to λ0 is called the geometric

multiplicity of λ0 , and the number of times that λ - λ0

appears as a factor in the characteristic polynomial of A is

called the algebraic multiplicity of λ0 .

Theorem 4.11 - Geometric and Algebraic Multiplicity

If A is a square matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less

than or equal to the algebraic multiplicity.

(b) A is diagonalizable if and only if the geometric multiplicity

of every eigenvalue is equal to the algebraic multiplicity.

4.4 Inner Product Spaces

An inner product is a generalization of the dot product.

An inner product on a real vector space V is a function that

associates a real number 〈u, v〉 with each pair of vectors in V

in such a way that the following axioms are satisfied for all

vectors u, v, and w in V and all scalars k.
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1. 〈u, v〉=〈v, u〉 [ Symmetry axiom]

2. 〈u+ v, w〉=〈u,w〉+〈v, w〉 [ Additivity axiom]

3. 〈ku, v〉 = k〈u, v〉 [Homogeneity axiom]

4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0 [Positivity

axiom]

A real vector space with an inner product is called a real

inner product space.

Because the axioms for a real inner product space are based

on properties of the dot product, these inner product space

axioms will be satisfied automatically if we define the inner

product of two vectors u and v in Rn to be

〈u, v〉 = u.v = u1v1 + u2v2 + · · ·+ unvn .

This inner product is commonly called the Euclidean inner

product (or the standard inner product) on Rn.

If V is a real inner product space, then the norm (or length)

of a vector v in V is denoted by ‖v‖ and is defined by

‖v‖ =
√
〈v, v〉

and the distance between two vectors is denoted by d(u, v)

and is defined by

d(u, v) = ‖u− v‖ =
√
〈u− v, u− v〉.
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A vector of norm 1 is called a unit vector.

Theorem 4.12 If u and v are vectors in a real inner product

space V, and if k is a scalar, then:

(a) ‖v‖ ≥ 0with equality if and only if v = 0.

(b) ‖kv‖ = |k|‖v‖.

(c) d(u, v) = d(v, u).

(d) d(u, v) ≥ 0 with equality if and only if u = v.

Proof. (a) Let v be any vector in a real inner product space

V. Then by the definition of norm of a vector and positivity

axiom of inner product, we get

‖v‖ =
√
〈v, v〉 ≥ 0 and

‖v‖ =
√
〈v, v〉 ≥ 0⇔ 〈v, v〉 = 0⇔ v = 0.

(b) Let v be any vector in a real inner product space V and k

be any scalar. Then by the definition of norm of a vector and

homogeneity axiom of inner product, we get

‖kv‖ =
√
〈kv, kv〉 =

√
k〈v, kv〉 =

√
k〈kv, v〉 (by symmetry axiom)

=
√
k2〈v, v〉 =

√
k2
√
〈v, v〉 = |k|‖v‖.

(c) Let u and v any two vectors in a real inner product space

V. Then from the definition of distance between two vectors,

we obtain
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d(u, v) = ‖u− v‖ = ‖(−1)(v − u)‖

= |(−1)|‖(v − u)‖ by part (b)

= ‖(v − u)‖ = d(v, u).

(d) Let u and v any two vectors in a real inner product space

V. Then from the definition of distance between two vectors

and part (a) of this theorem, we get

d(u, v) = ‖u− v‖ ≥ 0 and

d(u, v) = ‖u− v‖ = 0⇔ u− v = 0⇔ u = v.

Example 21. The Standard Inner Product on Pn

If p = a0 + a1x + · · · + anx
n and q = b0 + b1x + · · · + bnx

n are

polynomials in Pn , then the following formula defines an inner

product on Pn that we will call the standard inner product on

this space:

〈p, q〉 = a0b0 + a1b1 + · · ·+ anbn .

The norm of a polynomial p relative to this inner product is

‖p‖ =
√
〈p, p〉 =

√
a2

0
+ a2

1
+ · · ·+ a2

n

Verification:

For any p = a0 + a1x+ · · ·+ anx
n, q = b0 + b1x+ · · ·+ bnx

n and

r = c0 + c1x+ · · ·+ cnx
n and for any real number k, we get

1. 〈p, q〉 = a0b0 + a1b1 + · · ·+ anbn
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= b0a0 + b1a1 + · · ·+ bnan = 〈q, p〉

2. 〈p+ q, r〉 = (a0 + b0)c0 + (a1 + b1)c1 + · · ·+ (an + bn)cn

= (a0c0 + a1c1 + · · ·+ ancn) + (b0c0 + b1c1 + · · ·+ bncn)

= 〈p, r〉+ 〈q, r〉.

3. 〈kp, q〉 = (ka0)b0 + (ka1)b1 + · · ·+ (kan)bn

= k(a0b0 + a1b1 + · · ·+ anbn) = k〈p, q〉.

4. 〈p, p〉 = a2
0

+ a2
1

+ · · ·+ a2
n
≥ 0,

〈p, p〉 = 0⇔ a2
0

+ a2
1

+ · · ·+ a2
n

= 0⇔ a
i

= 0∀i⇔ p = 0.

Example 22. An Integral Inner Product on C[a, b]

Let f = f(x) and g = g(x) be two functions in C[a, b] and

define 〈f, g〉 =
∫ b
a
f(x)g(x)dx.

We will show that this formula defines an inner product on

C[a, b] by verifying the four inner product axioms for functions

f = f(x), g = g(x), h = h(x) in C[a, b]:

Axiom 1: 〈f, g〉 =
∫ b
a
f(x)g(x)dx =

∫ b
a
g(x)f(x)dx = 〈g, f〉.

Axiom 2: 〈f+g, h〉 =
∫ b
a
[f(x)+g(x)]h(x)dx =

∫ b
a
f(x)h(x)dx+∫ b

a
g(x)h(x)dx = 〈f, h〉+ 〈g, h〉.

Axiom 3: 〈kf, g〉 =
∫ b
a
kf(x)g(x)dx = k

∫ b
a
f(x)g(x)dx =

k〈f, g〉.

Axiom 4: 〈f, f〉 =
∫ b
a
f(x)f(x)dx =

∫ b
a
f 2(x)dx ≥ 0,
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since f 2(x) ≥0 for all x in the interval [a, b]. Moreover, because

f is continuous on [a, b], the equality in the above equation

holds if and only if the function f is identically zero on [a, b],

that is, if and only if f = 0.

Problem

Show that the vector space P2 of all polynomials with degree less

than or equal to two, is an innerproduct spcae with inner prod-

uct defined by 〈p, q〉 =
∫ 1

−1
p(x)q(x)dx∀p = p(x), q = q(x) ∈ P2 .

4.5 Angle and Orthogonality in In-

ner Product Spaces

We know that the angle θ between two vectors u and v in Rn

is given by the formula

cosθ =
u.v

‖u‖‖v‖
=
〈u, v〉
‖u‖‖v‖

,

where 〈u, v〉 is the standard inner product on Rn.

In sequel with the above formula, the angle θ between two

vectors u and v in an innerproduct space is given by the
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formula

cosθ =
〈u, v〉
‖u‖‖v‖

.

Two vectors u and v in an inner product space V is called

orthogonal if 〈u, v〉 = 0.

Example 23. The vectors u = (1, 1) and v = (1,−1)

are orthogonal with respect to the Euclidean inner product on

R2 since u.v = (1)(1) + (1)(−1) = 0.

However, they are not orthogonal with respect to the

weighted Euclidean inner product 〈u, v〉 = 3u1v1 + 2u2v2 since

〈u, v〉 = 3(1)(1) + 2(1)(−1) = 1 6= 0.

Example 24. Let P2 have the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x)dx and let p = x and q = x2.

Now, ‖p‖ = 〈p, p〉1/2 = [
∫ 1

−1
xxdx]1/2 = [

∫ 1

−1
x2dx]1/2 =

√
2
3

and ‖q‖ = 〈q, q〉1/2 = [
∫ 1

−1
x2x2dx]1/2 = [

∫ 1

−1
x4dx]1/2 =

√
2
5
.

Also, 〈p, q〉 =
∫ 1

−1
xx2dx =

∫ 1

−1
x3dx = 0.

Because 〈p, q〉 = 0, the vectors p = x and q = x2 are orthogonal

relative to the given inner product.

Problem

Show that the vectors u = (−4, 6, 1, 1), (2, 1,−7, 9) are orthog-
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onal with respect to the Euclidian inner product.

4.6 Gram–Schmidt Process

A set of two or more vectors in a real inner product space is

said to be orthogonal if all pairs of distinct vectors in the set

are orthogonal. An orthogonal set in which each vector has

norm 1 is said to be orthonormal.

A simple way to convert an orthogonal set of nonzero vectors

into an orthonormal set is to multiply each vector v in the

orthogonal set by the reciprocal of its length to create a vector

of norm 1 (called a unit vector). Suppose that v is a nonzero

vector in an inner product space, and let

u =
1

‖v‖
v.

Then by the properties of norm of a vector, we obtain

‖u‖ = ‖ 1

‖v‖
v‖ = | 1

‖v‖
| ‖v‖ = 1.

This process of multiplying a vector v by the reciprocal of its

norm(length) is called normalizing v.

Example 25. Let v1 = (0, 1, 0), v2 = (1, 0, 1), v3 = (1, 0,−1)
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and assume that R3 has the Euclidean inner product. It

follows that the set of vectors S = {v1 , v2 , v3} is orthogonal

since 〈v1 , v2〉 = 〈v1 , v3〉 = 〈v2 , v3〉 = 0.

The Euclidean norms of the above vectors are

‖v1‖ = 1, ‖v2‖ =
√

2, ‖v3‖ =
√

2.

Consequently, normalizing v1 , v2 , v3 gives,

u1 =
v1

‖v1‖
= (0, 1, 0), u2 =

v2

‖v2‖
= ( 1√

2
, 0, 1√

2
),

u3 =
v3

‖v3‖
= ( 1√

2
, 0, 1√

2
).

Also, 〈v1 , v2〉 = 〈v1 , v3〉 = 〈v2 , v3〉 = 0 and

‖u1‖, ‖u2‖, ‖u3‖ = 1.

Hence the set S = {u1 , u2 , u3} is orthonormal in R3.

Theorem 4.13 If S = {v1 , v2 , . . . , vn} is an orthogonal set of

nonzero vectors in an inner product space, then S is linearly

independent.

Proof. Assume that k1v1 + k2v2 + · · ·+ knvn = 0 (1)

To demonstrate that S = {v1 , v2 , . . . , vn} is linearly indepen-

dent, we must prove that k1 = k2 = · · · = kn = 0. For each v
i

in S, it follows from (1) that

〈k1v1 + k2v2 + · · ·+ knvn , vi〉 = 〈0, v
i
〉 = 0

or equivalently,
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k1〈v1 , vi〉+ k2〈v2 , vi〉+ · · ·+ kn〈vn , vi〉 = 0. (2)

From the orthogonality of S it follows that 〈v
j
, v

i
〉 = 0 when

j 6= i, so this equation reduces to k
i
〈v

i
, v

i
〉 = 0.

Since the vectors in S are assumed to be nonzero, it follows

from the positivity axiom for inner products that 〈v
i
, v

i
〉 6= 0.

Thus, the preceding equation implies that each k
i

in equation

(1) is zero. Thus S is linearly independent.

In an inner product space, a basis consisting of orthonormal

vectors is called an orthonormal basis, and a basis consisting

of orthogonal vectors is called an orthogonal basis.

A familiar example of an orthonormal basis is the standard

basis for Rn with the Euclidean inner product:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1).

Example 26. Recall the standard inner product of the poly-

nomials. If p = a0 +a1x+· · ·+anxn and q = b0 +b1x+· · ·+bnxn

are polynomials in Pn , then their inner product on Pn is:

〈p, q〉 = a0b0 + a1b1 + · · ·+ anbn and

the norm of a polynomial p relative to this inner product is

‖p‖ =
√
〈p, p〉 =

√
a2

0
+ a2

1
+ · · ·+ a2

n

Clearly the standard basis S = {1, x, x2, . . . , xn} is orthonormal
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with respect to this inner product.

Example 27. In Example 25. we see that u1 = (0, 1, 0), u2 =

( 1√
2
, 0, 1√

2
), u3 = ( 1√

2
, 0, 1√

2
) form an orthonormal set with

respect to the Euclidean inner product on R3. By Theorem

4.13, these vectors form a linearly independent set, and since

R3 is three-dimensional, it follows that S = {u1 , u2 , u3} is an

orthonormal basis for R3.

Let V be an inner product space and {v1 , v2 , . . . vn} be a ba-

sis for V. Let u be a vector in V and u = c1v1 +c2v2 + · · ·+cnvn

where c1 , c2 , . . . , cn are scalars. Then the scalars c1 , c2 , . . . , cn

are called the coordinates of u relative to S. The vector

(c1 , c2 , . . . , cn) in Rn constructed from these coordinates is

called the coordinate vector of u relative to S and is

denoted by (u)
S

= (c1 , c2 , . . . , cn).

One way to express a vector u as a linear combination of basis

vectors S = {v1 , v2 , . . . vn} is to convert the vector equation

u = c1v1 + c2v2 + · · · + cnvn to a linear system and solve for

the coefficients c1 , c2 , . . . , cn . However, if the basis happens

to be orthogonal or orthonormal, then the following theorem

shows that the coefficients can be obtained more simply by
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computing appropriate inner products.

Theorem 4.14 (a) If S = {v1 , v2 , . . . vn} is an orthogonal basis

for an inner product space V, and if u is any vector in V, then

u =
〈u, v1〉
‖v1‖2

v1 +
〈u, v2〉
‖v2‖2

v2 + · · ·+ 〈u, vn〉
‖vn‖2

vn .

(b) If S = {v1 , v2 , . . . vn} is an orthonormal basis for an inner

product space V, and if u is any vector in V, then

u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · ·+ 〈u, vn〉vn .

Proof. (a) Since S = {v1 , v2 , . . . vn} is a basis for V, every

vector u in V can be expressed in the form

u = c1v1 + c2v2 + · · ·+ cnvn (1).

We will complete the proof by showing that

c
i

=
〈u, v

i
〉

‖v
i
‖2

for i = 1, 2, . . . , n. To do this, observe first that

〈u, v
i
〉 = 〈c1v1 + c2v2 + · · ·+ cnvn , vi〉

= c1〈v1 , vi〉+ c2〈v2 , vi〉+ · · ·+ cn〈vn , vi〉.

Since S is an orthogonal set, all of the inner products in the

last equality are zero except the ith, so we have

〈u, v
i
〉 = c

i
〈v

i
, v

i
〉 = c

i
‖v

i
‖2.

So c
i

=
〈u, v

i
〉

‖v
i
‖2

.

This completes the proof.
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(b) In this case ‖v1‖ = ‖v2‖ = · · · = ‖vn‖ = 1. So the formula

obtained in part (a) reduces to

u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · ·+ 〈u, vn〉vn .

As a consequence of the above theorem, it follows that the

coordinate vector of a vector u in V relative to an orthogonal

basis S = {v1 , v2 , . . . vn} is

(u)
S

=

(
〈u, v1〉
‖v1‖2

,
〈u, v2〉
‖v2‖2

, . . . ,
〈u, vn〉
‖vn‖2

)
and relative to an orthonormal basis S = {v1 , v2 , . . . vn} is

(u)
S

= (〈u, v1〉, 〈u, v2〉, . . . , 〈u, vn〉).

Example 28. Show hat S = {v1 , v2 , v3} is an orthonor-

mal basis for R3 with the Euclidean inner product where

v1 = (0, 1, 0), v2 = (−4/5, 0, 3/5), v3 = (3/5, 0, 4/5). Express

the vector u = (1, 1, 1) as a linear combination of the vectors

in S, and find the coordinate vector (u)
S
.

Solution. One can verify that

〈u, v1〉 = 1, 〈u, v2〉 = −1
5
, 〈u, v3〉 = 7

5
.

Therefore, by Theorem 4.14 we have

u = v1 − 1
5
v2 + 7

5
v3

that is, (1, 1, 1) = (0, 1, 0)− 1
5
(−4/5, 0, 3/5) + 7

5
(3/5, 0, 4/5).

Thus, the coordinate vector of u relative to S is
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(u)
S

= (〈u, v1〉, 〈u, v2〉, 〈u, v3〉) = (1, −1
5
, 7
5
).

Example 29. (a) Show that the vectors

w1 = (0, 2, 0), w2 = (3, 0, 3), w3 = (−4, 0, 4)

form an orthogonal basis for R3 with the Euclidean inner

product, and use that basis to find an orthonormal basis by

normalizing each vector.

(b) Express the vector u = (1, 2, 4) as a linear combination of

the orthonormal basis vectors obtained in part (a).

Solution. The given vectors form an orthogonal set since

〈w1 , w2〉 = 0, 〈w1 , w3〉 = 0, 〈w2 , w3〉 = 0.

It follows from Theorem 4.13 that these vectors are linearly

independent and hence form a basis for R3.

Also, we obtain ‖w1‖ = 2, ‖w2‖ = 3
√

2, ‖w3‖ = 4
√

2.

Let v1 =
w1

‖w1‖
=

(0, 2, 0)

2
= (0, 1, 0),

v2 =
w2

‖w2‖
=

(3, 0, 3)

3
√

2
=
(

1√
2
, 0, 1√

2

)
,

v3 =
w2

‖w2‖
=

(−4, 0, 4)

4
√

2
=
(
− 1√

2
, 0, 1√

2

)
.

Then {v1 , v2 , v3} is an orthogonal basis for R3 with the

Euclidean inner product.

(b) It follows from Theorem 4.14(b) that

u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · ·+ 〈u, vn〉vn .
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〈u, v1〉 = (1, 2, 4).(0, 1, 0) = 2

〈u, v2〉 = (1, 2, 4).
(

1√
2
, 0, 1√

2

)
= 5√

2

〈u, v3〉 = (1, 2, 4).
(
− 1√

2
, 0, 1√

2

)
= 3√

2
.

Hence (1, 2, 4) = 2(0, 1, 0) + 5√
2

(
1√
2
, 0, 1√

2

)
+ 3√

2

(
− 1√

2
, 0, 1√

2

)
.

Theorem 4.15 Every nonzero finite-dimensional inner prod-

uct space has an orthonormal basis.

The step-by-step construction of an orthogonal (or orthonor-

mal) basis is called the Gram–Schmidt process. A summary

of the steps is as given below:

To convert a basis u1 , u2 , . . . , ur into an orthogonal basis

v1 , v2 , . . . , vr , perform the following computations:

Step 1. v1 = u1

Step 2. v2 = u2 −
〈u2 , v1〉
‖v1‖2

v1

Step 3. v3 = u3 −
〈u3 , v1〉
‖v1‖2

v1 −
〈u3 , v2〉
‖v2‖2

v2

Step 4. v4 = u4 −
〈u4 , v1〉
‖v1‖2

v1 −
〈u4 , v2〉
‖v2‖2

v2 −
〈u4 , v3〉
‖v3‖2

v3

...
...

(continue for r steps)

Optional Step. To convert the orthogonal basis into an

orthonormal basis {q1 , q2 , . . . , qr}, normalize the orthogonal

basis vectors.
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Example 30. Assume that the vector space R3 has the

Euclidean inner product. Apply the Gram-Schmidt process to

transform the basis vectors u1 = (1, 1, 1), u2 = (0, 1, 1), u3 =

(0, 0, 1) into an orthogonal basis {v1 , v2 , v3}, and then normalize

the orthogonal basis vectors to obtain an orthonormal basis

{q1 , q2 , q3}.

Solution. Step 1. v1 = u1 = (1, 1, 1).

Step 2. v2 = u2 −
〈u2 , v1〉
‖v1‖2

v1

= (0, 1, 1)− 2/3 (1, 1, 1) = (−2/3, 1/3, 1/3).

Step 3. v3 = u3 −
〈u3 , v1〉
‖v1‖2

v1 −
〈u3 , v2〉
‖v2‖2

v2

= (0, 0, 1)− 1/3(1, 1, 1)− 1/3

2/3
(−2/3, 1/3, 1/3)

= (0, − 1/2, 1/2).

Thus, v1 = (1, 1, 1), v2 = (−2/3, 1/3, 1/3), v3 = (0, −1/2, 1/2)

form an orthogonal basis for R3. The norms of these vectors

are ‖v1‖ =
√

3, ‖v2‖ =

√
6

3
, ‖v3‖ =

1√
2
.

So an orthonormal basis for R3 is

q1 =
v1

‖v1‖
=
(

1√
3
, 1√

3
, 1√

3

)
, q2 =

v2

‖v2‖
=
(
− 2√

6
, 2√

6
, 2√

6

)
,

q3 =
v2

‖v2‖
=
(

0,− 1√
2
, 1√

2

)
.

Example 31. Let the vector space P2 have the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x)dx.
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Apply the Gram–Schmidt process to transform the stan-

dard basis {1, x, x2} for P2 into an orthogonal basis

{φ1(x), φ2(x), φ3(x)}.

Solution. Take u1 = 1, u2 = x, and u3 = x2.

Step 1. v1 = u1 = 1.

Step 2. We have 〈u2 , v1〉 =
∫ 1

−1
xdx = 0.

So v2 = u2 −
〈u2 , v1〉
‖v1‖2

v1 = u2 = x.

Step 3. We have 〈u3 , v1〉 =
∫ 1

−1
x2dx = 2/3,

〈u3 , v2〉 =
∫ 1

−1
x3dx = 0 and

‖v1‖2 = 〈v1 , v1〉 =
∫ 1

−1
1dx = 2.

So v3 = u3 −
〈u3 , v1〉
‖v1‖2

v1 −
〈u3 , v2〉
‖v2‖2

v2 = x2 − 1/3.

Thus, we have obtained the orthogonal basis {φ1(x), φ2(x), φ3(x)}

in which φ1(x) = 1, φ2(x) = x, φ3(x) = x2 − 1/3.

Theorem 4.16 If W is a finite-dimensional inner product

space, then:

(a) Every orthogonal set of nonzero vectors in W can be

enlarged to an orthogonal basis for W.

(b) Every orthonormal set in W can be enlarged to an or-

thonormal basis for W.
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4.7 Diagonalization

A square matrix A is said to be orthogonal if its transpose is

the same as its inverse, that is, if

A−1 = AT

or, equivalently, if AAT = I = ATA.

Example 32. Consider the matrix


3
7

2
7

6
7

−6
7

3
7

2
7

2
7

6
7
−3

7

.

Now, ATA =


3
7
−6

7
2
7

2
7

3
7

6
7

6
7

2
7
−3

7




3
7

2
7

6
7

−6
7

3
7

2
7

2
7

6
7
−3

7

 =


1 0 0

0 1 0

0 0 1

 = I.

Hence A−1 = AT and so A is orthogonal.

Example 33. We know that the standard matrix for the rota-

tion operator T : R2 → R2 that moves points counterclockwise

about the origin through a positive angle θ, is

 cosθ sinθ

−sinθ cosθ

.

The matrix is orthogonal for all choices of θ since

ATA =

cosθ −sinθ
sinθ cosθ


 cosθ sinθ

−sinθ cosθ

 =

1 0

0 1

 = I.

Similarly, we can show that the standard matrix for the

rotation operators on R3 are also orthogonal.
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The standard matrices for the reflection operators on R2 and

R3 that maps each point into its symmetric image about a

fixed line or plane are orthogonal.

Observe that for the orthogonal matrices in the above

example, both the row vectors and the column vectors form

orthonormal sets with respect to the Euclidean innerproduct.

This is a consequence of the following theorem.

Theorem 4.17 The following are equivalent for an n × n

matrix A.

(a) A is orthogonal.

(b) The row vectors of A form an orthonormal set in Rn with

the Euclidean innerproduct.

(c) The column vectors of A form an orthonormal set in Rn

with the Euclidean innerproduct.

Proof. Let r
i

be the i th row vector and c
j

the j th column

vector of A and let rt
i

be the i th row vector and ct
j

the j th

column vector of AT . Since transposing a matrix converts its

columns to rows and rows to columns, it follows that ct
j

= r
j

and rt
i

= c
i
, ∀i, j = 1, 2, . . . , n.

(a) ⇔ (b)
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From the row-column rule for multiplication of matrices, we

get the (i, j)th element of AAT as (AAT )
ij

=r
i
ct
j

= r
i
.r
j
,∀i, j =

1, 2, . . . , n.

So AAT =



r1.r1 r1.r2 . . . r1.rn

r2.r1 r2.r2 . . . r2.rn
...

...
...

rn.r1 rn.r2 . . . rn.rn


(1)

It is evident from the formula (1) that AAT=I if and only if

r1.r1 = r2.r2 = · · · = rn.rn = 1 and r
i
.r
j

= 0 when i 6= j.

which are true if and only if {r1 , r2 , . . . , rn} is an orthonormal

set in Rn.

(a) ⇔ (c)

From the row-column rule for multiplication of matrices, we

get the (i, j)th element of AAT as (AAT )
ij

=rt
i
c
j

= c
i
.c
j
,∀i, j =

1, 2, . . . , n.

So AAT =



c1.c1 c1.c2 . . . c1.cn

c2.c1 c2.c2 . . . c2.cn
...

...
...

cn.c1 cn.c2 . . . cn.cn


(1)

It is evident from the formula (1) that AAT=I if and only if

c1.c1 = c2.c2 = · · · = cn.cn = 1 and c
i
.c
j

= 0 when i 6= j.
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which are true if and only if {c1 , c2 , . . . , cn} is an orthonormal

set in Rn.

Theorem 4.18(a) The transpose of an orthogonal matrix is

orthogonal.

(b) The inverse of an orthogonal matrix is orthogonal.

(c) A product of orthogonal matrices is orthogonal.

(d) If A is orthogonal, then det(A) = 1 or det(A) = -1.

Proof. (a) Let A be an orthogonal matrix. Then by definition

AAT = I = ATA.

Since (AT )T=A, the above equation can be written as

(AT )TAT = I = AT (AT )T .

Hence (AT )−1=(AT )T and so AT is orthogonal. Thus transpose

of every orthogonal matrix is orthogonal.

(b) Let A be an orthogonal matrix. Then by definition, A is

invertible and

A−1 = AT . Then (A−1)−1 = (AT )−1.

We know if A is invertible, then its transpose is also invertible

and (AT )−1=(A−1)T .

Hence (A−1)−1 = (AT )−1 = (A−1)T .

Hence A−1 is orthogonal. Thus inverse of every orthogonal
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matrix is orthogonal.

(c) Let A and B be two orthogonal matrices of same order.

Since A and B are orthogonal,

A−1 = AT and B−1 = BT .

Since A and B are invertible, |A| 6= 0 and |B| 6= 0. Hence

|AB| = |A||B| 6= 0 and |BA| = |B||A| 6= 0.

Thus both AB and BA are nonsingular,

(AB)−1 = B−1A−1 = BTAT = (AB)T and

(BA)−1 = A−1B−1 = ATBT = (BA)T .

Thus both AB and BA are orthogonal. Thus product of

orthogonal matrices is orthogonal.

(d) Let A be an orthogonal matrix.

A is orthogonal ⇒ AAT = I

⇒ det(AAT ) = det(I)

⇒ det(A) det(AT ) = 1

⇒ det(A) det(A) = 1 [since det(A)=det(AT )]

⇒ [det(A)2] = 1

⇒ det(A) = ± 1.

Theorem 4.19 If A is an n × n matrix, then the following are

equivalent.
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(a) A is orthogonal.

(b) Ax=x for all x in Rn.

(c) Ax . Ay = x . y for all x and y in Rn.

The above theorem has a useful geometric interpretation when

considered from the view point of matrix transformations: If

A is an orthogonal matrix and T
A

: Rn → Rn is multiplication

by A, then we will call T
A

an orthogonal operator on Rn.

4.8 Orthogonal Diagonalization

We know that two square matrices A and B are said to be

similar if there is an invertible matrix P such that P−1AP =

B.

If A and B are square matrices, then we say that B is

orthogonally similar to A if there is an orthogonal matrix P

such that B = PTAP.

Note that if B is orthogonally similar to A, then it is also true

that A is orthogonally similar to B since we can express A as
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A = QTBQ by taking Q = PT . This being the case we will

say that A and B are orthogonally similar matrices if either is

orthogonally similar to the other.

If A is orthogonally similar to some diagonal matrix, say

PTAP = D, then we say A is orthogonally diagonalizable

and that P orthogonally diagonalizes A.

Suppose that A is orthogonally diagonalizable.

Then PTAP = D (1), where P is an orthogonal matrix

and D is a diagonal matrix. Multiplying the left side of (1) by

P, the right side by PT , and then using the fact that PPT =

PTP = I , we can rewrite this equation as A = PDPT . (2)

Now transposing both sides of this equation and using the fact

that a diagonal matrix is the same as its transpose we obtain

AT = (PDPT )T = PDTPT = PDPT = A

so A must be symmetric if it is orthogonally diagonaliz-

able. The following theorem shows that every orthogonally

diagonalizable is symmetric and every symmetric matrix is

diagonalizable.

Theorem 4.20 If A is an n × n matrix with real entries, then

the following are equivalent.



278

(a) A is orthogonally diagonalizable.

(b) A has an orthonormal set of n eigenvectors.

(c) A is symmetric.

Proof. (a) ⇒ (b) Since A is orthogonally diagonalizable, there

is an orthogonal matrix P such that P−1AP is diagonal. As

shown in Formula (2) in the proof of Theorem 4.8, the n column

vectors of P are eigenvectors of A. Since P is orthogonal, these

column vectors are orthonormal, so A has n orthonormal

eigenvectors.

(b) ⇒ (a) Assume that A has an orthonormal set of n eigen-

vectors {p1 , p2 , . . . , pn}. As shown in the proof of Theorem 4.8,

the matrix P with these eigenvectors as columns diagonalizes

A. Since these eigenvectors are orthonormal, P is orthogonal

and thus orthogonally diagonalizes A.

(a) ⇒ (c) In the proof that (a) ⇒ (b) we showed that an

orthogonally diagonalizable n × n matrix A is orthogonally

diagonalized by an n × n matrix P whose columns form an

orthonormal set of eigenvectors of A. Let D be the diagonal

matrix D = PTAP from which it follows that A = PDPT .

Thus, AT = (PDPT )T = PDTPT = PDPT = A
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which shows that A is symmetric.

(c) ⇒ (a) The proof of this part is beyond the scope of the

syllabus.

Theorem 4.21 If A is a symmetric matrix with real entries,

then:

(a) The eigenvalues of A are all real numbers.

(b) Eigenvectors from different eigenspaces are orthogonal.

The above theorem yields the following procedure for orthogo-

nally diagonalizing a symmetric matrix.

Orthogonally Diagonalizing an n × n Symmetric Matrix

Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram–Schmidt process to each of these

bases to obtain an orthonormal basis for each eigenspace.

Step 3. Form the matrix P whose columns are the vectors con-

structed in Step 2. This matrix will orthogonally diagonalize

A, and the eigenvalues on the diagonal of D = PTAP will be

in the same order as their corresponding eigenvectors in P.

Example 34. Find an orthogonal matrix P that diagonalizes
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A=


4 2 2

2 4 2

2 2 4

.

The characteristic equation of A is det(λI - A)

= det


λ− 4 −2 −2

−2 λ− 4 −2

−2 −2 λ− 4

 = (λ− 2)2(λ− 8) = 0.

Thus, the distinct eigenvalues of A are λ = 2 and λ = 8.

It can be shown that u1 =


−1

1

0

 and u2 =


−1

0

1

 form a basis

for the eigenspace corresponding to λ = 2.

Applying the Gram–Schmidt process to {u1 , u2} yields the

following orthonormal eigenvectors

v1 =


− 1√

2

1√
2

0

 and v2 =


− 1√

6

− 1√
6

2√
6

.

Similarly, the eigenspace corresponding to λ = 8 has

u3 =


1

1

1

 as a basis. Applying the Gram–Schmidt process to

{u3} (i.e., normalizing u3) yields
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v3 =


1√
3

1√
3

1√
3

.

Finally, using v1 , v2 , v3 as column vectors, we obtain

P=


− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3


which orthogonally diagonalizes A. One can check that

PTAP=


− 1√

2
1√
2

0

− 1√
6
− 1√

6
2√
6

1√
3

1√
3

1√
3




4 2 2

2 4 2

2 2 4



− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3



=


2 0 0

0 2 0

0 0 8

.

4.8.1 Spectral Decomposition

If A is a symmetric matrix that is orthogonally diagonalized by

P =

[
u1 u2 . . . un

]
and if λ1 , λ2 , . . . , λn are the eigenvalues

of A corresponding to the unit eigenvectors u1 , u2 , . . . , un , then
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we know that D = PTAP , where D is a diagonal matrix with

the eigenvalues in the diagonal positions. It follows from this

that the matrix A can be expressed as

A=PDPT=

[
u1 u2 . . . un

]


λ1 0 . . . 0

0 λ2 . . . 0

...
...

. . .
...

0 0 . . . λn





uT
1

uT
2

. . .

uT
n



=

[
λ1u1 λ2u2 . . . λnun

]


uT
1

uT
2

. . .

uT
n


= λ1u1u

T
1

+ λ2u2u
T
2

+ · · ·+ λnunu
T
n

.

Hence we obtain the formula A=λ1u1u
T
1

+λ2u2u
T
2

+· · ·+λnunuTn ,

which is called a spectral decomposition of A.

Note that each term of the spectral decomposition of A has

the form λuuT , where u is a unit eigenvector of A in column

form, and λ is an eigenvalue of A corresponding to u. Since u

has size n × 1, it follows that the product uuT has size n ×

n. It can be proved that uuT is the standard matrix for the

orthogonal projection of Rn on the subspace spanned by the

vector u. Accepting this to be so, the spectral decomposition
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of A tells that the image of a vector x under multiplication by

a symmetric matrix A can be obtained by projecting x orthog-

onally on the lines (one-dimensional subspaces) determined by

the eigenvectors of A, then scaling those projections by the

eigenvalues, and then adding the scaled projections.

Example 35. Find the spectral decomposition of the

matrix

A=

1 2

2 −2

.

The characteristic equation of A is det(λI - A)

= det

λ− 1 −2

−2 λ+ 2

 = (λ+ 3)(λ− 2) = 0.

Hence λ = −3, λ = 2 are the eigen values.

Solving we get the basis for the eigenspace corresponding to

the eigenvector λ = −3 is {v1} =


 1

−2


 and the eigenspace

corresponding to the eigenvector λ = 2 is {v2} =


2

1


.

Normalizing the vectors v1 and v2 , we get the unit basis vectors
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as u1 =
v1

‖v1‖
=

 1√
5

− 2√
5

 and u2 =
v2

‖v2‖
=

 2√
5

1√
5

.

Hence the spectral decomposition of A is1 2

2 −2

 = λ1u1u
T
1

+ λ2u2u
T
2

= (−3)

 1√
5

− 2√
5

[ 1√
5
− 2√

5

]
+ (2)

 2√
5

1√
5

[ 2√
5

1√
5

]

= (−3)

 1
5
−2

5

−2
5

4
5

+ (2)

4
5

2
5

2
5

1
5

 .


